
Encoding Partitions As Ascending
Compositions

A thesis submitted to the National University of Ireland

in accordance with the requirements of the degree of

Doctor of Philosophy in the Faculty of Science.

Jerome Kelleher
Department of Computer Science

University College Cork

December 2005

Research Supervisor Dr. Barry O’Sullivan

Head of Department Professor Gregory M. Provan

Abstract

Existing algorithms to generate all partitions of n (unordered collections

of positive integers whose sum is n) in lexicographic order encode partitions

as descending compositions (sequences of positive integers d1 ≥ · · · ≥ dk such

that d1+· · ·+dk = n). We develop algorithms using the alternative encoding,

ascending compositions (sequences of positive integers a1 ≤ · · · ≤ ak such

that a1 + · · · + ak = n). By encoding partitions as ascending compositions

we significantly improve on the efficiency and generality of existing partition

generation techniques. The new algorithms are compared with their de-

scending composition counterparts by an extensive theoretical and empirical

analysis. In each case the ascending composition encoding leads to a signifi-

cantly more efficient (yet simpler) algorithm. Using ascending compositions

to encode partitions also allows us to define efficient algorithms to generate

a wide variety of restricted partition. We develop a theoretical framework

that concisely defines important classes of restricted partition (e.g. Rogers-

Ramanujan and Göllnitz-Gordon partitions) using an integer function. We

develop efficient generation and enumeration algorithms in which the required

restriction is specified by supplying the relevant function as a parameter.

Declaration

This dissertation is submitted to University College Cork, in accordance with

the requirements for the degree of Doctor of Philosophy in the Faculty of Sci-

ence. The research and thesis presented in this dissertation are entirely my

own work and have not been submitted to any other university or higher edu-

cation institution, or for any other academic award in this university. Where

use has been made of other people’s work, it has been fully acknowledged

and referenced.

Jerome Kelleher

December 2005

i

Acknowledgements

Firstly, I would like to thank my supervisor, Dr. Barry O’Sullivan. His

patience, hard work and attention to detail were of incalculable benefit to this

research, especially with respect to the mathematical content. I would also

like to thank Enterprise Ireland for generously supporting this research under

their Basic Research Grant Scheme (Grant Number SC/02/289). Thanks also

to Derek Bridge and Anne Marie Kelleher, whose meticulous reading and

well-founded criticism greatly improved this dissertation. Finally, I would

like to apologise to my family and friends for the absences enforced by this

work, and thank them for their support and understanding.

ii

Contents

1 Introduction 1

1.1 Partitions . 2

1.2 Combinatorial Generation . 3

1.3 Thesis and Dissertation Overview 6

1.3.1 Thesis . 7

1.3.2 Dissertation Overview 9

2 Literature Review 11

2.1 Combinatorial Generation . 11

2.1.1 General Background 12

2.1.2 Generation Order . 13

2.1.3 Analysis . 14

2.1.4 Auxiliary Problems . 17

2.2 Compositions and Partitions 18

2.2.1 Compositions . 19

2.2.2 Partitions . 22

2.2.3 Encoding Partitions . 24

2.3 Generating Compositions . 26

2.3.1 Representations . 26

2.3.2 Generation Order . 28

2.3.3 Unrestricted Generators 30

2.3.4 Restricted Generators 36

2.3.5 Miscellaneous Algorithms 40

2.4 Summary . 42

iii

CONTENTS

3 Interpart Restricted Compositions 44

3.1 An Algorithmic Framework 44

3.1.1 Definitions and Notational Conventions 45

3.1.2 Fundamental Results 49

3.1.3 Examples . 53

3.2 Enumeration . 62

3.2.1 A General Recurrence Equation 63

3.2.2 Integer Sequences . 66

3.3 Summary . 69

4 Generating Interpart Restricted Compositions 70

4.1 Preliminaries . 71

4.1.1 Definitions and Notation 71

4.1.2 Nondecreasing Restriction Functions 72

4.2 Recursive Algorithm . 75

4.2.1 Basic Principle . 75

4.2.2 Algorithm . 76

4.2.3 Analysis . 79

4.3 Succession Rule . 80

4.3.1 Basic Principle . 81

4.3.2 Algorithm . 83

4.3.3 Analysis . 90

4.3.4 Comparison with Existing Algorithms 93

4.4 Accelerated Algorithm . 95

4.4.1 Basic Principle . 96

4.4.2 Algorithm . 101

4.4.3 Analysis . 107

4.4.4 Comparison . 109

4.5 Summary . 116

5 Generating All Partitions 117

5.1 Preliminaries . 118

5.2 Recursive Algorithms . 121

iv

CONTENTS

5.2.1 Ascending Compositions 121

5.2.2 Descending Compositions 124

5.2.3 Comparison . 133

5.3 Succession Rules . 135

5.3.1 Ascending Compositions 136

5.3.2 Descending Compositions 146

5.3.3 Comparison . 151

5.4 Accelerated Algorithms . 156

5.4.1 Ascending Compositions 157

5.4.2 Descending Compositions 171

5.4.3 Comparison . 176

5.4.4 Other Algorithms . 183

5.5 Summary . 185

6 Conclusions and Future Work 187

6.1 Thesis Defence . 187

6.2 Future Work . 189

v

List of Figures

1.1 Example generation and consumer procedures. The genera-

tion procedure generates all ascending compositions of 4 in

lexicographic order, and the consuming procedure uses these

to compute the product of all parts in partitions of n. 4

2.1 Fenner & Loizou’s binary tree representation of the set of de-

scending compositions of 5, and the orders corresponding to a

inorder, preorder and postorder traversal of this tree. 29

3.1 Illustration of recurrence to count interpart restricted compo-

sitions for σ(x) = x+ 2. 66

4.1 Array state-transition diagram for recursive ascending compo-

sition generation algorithm. 78

4.2 Array state-transition diagram for the lexicographic succession

rule generation algorithm for interpart restricted compositions. 88

4.3 Composition blocks and terminal compositions. 97

5.1 Array state-transition diagram for the recursive ascending com-

position generation algorithm. 122

5.2 Array state-transition diagram for Ruskey’s algorithm. 127

5.3 Array state-transition diagram for the succession rule based

ascending composition generation algorithm. 140

vi

LIST OF FIGURES

5.4 Illustration of Theorem 5.6 for n = 5. The number of par-

titions of n may be obtained by summing b(x + y)/(x + 1)c
over all partitions of n, where y is the largest part and x is the

second largest part (x can be equal to y). 145

5.5 Array state-transition diagram for the succession rule based

descending composition generation algorithm. 148

5.6 Read and write tapes for the direct implementations of succes-

sion rules to generate ascending and descending compositions. 155

5.7 Read and write tapes for the accelerated algorithms to gener-

ate ascending and descending compositions. 180

vii

List of Tables

2.1 All compositions of 4 with corresponding subsets of {1, . . . , n},
tilings of a 1-by-n board with 1-by-q tiles, and binary (n− 1)-

tuples. 21

2.2 Comparison of algorithms to generate unrestricted, descend-

ing and ascending compositions in lexicographic and reverse

lexicographic order. 35

3.1 Table of restriction functions and partitions with parts satis-

fying certain congruence conditions which are enumerable via

a partition identity. 68

4.1 A comparison the rule-based algorithm to generate interpart

restricted compositions with Nārāyan. a’s and Riha & James’

algorithms. 94

4.2 Number terminal and nonterminal interpart restricted compo-

sitions of n for several restriction functions. 111

4.3 A comparison of the rule-based and accelerated algorithms to

generate interpart restricted compositions. 115

5.1 A comparison of recursive partition generators. 135

5.2 Empirical analysis of accelerated ascending and descending

composition generation algorithms. 183

5.3 Empirical comparison of major partition generation algorithms

in the various representations. 185

viii

List of Algorithms

3.1 Tabulateσ(N) . 67

4.1 RecGenσ(n,m, k) . 77

4.2 LexMinσ(n,m) . 86

4.3 RuleGenσ(n,m) . 89

4.4 LexMin′σ(n,m) . 102

4.5 AccelGenσ(n,m) . 105

5.1 RecAsc(n,m, k) . 122

5.2 RecDesc(n,m, k) [Rus01, §4.8] 126

5.3 RuleAsc(n) . 141

5.4 RuleDesc(n) . 147

5.5 AccelAsc(n) . 166

5.6 AccelDesc(n) [ZS98] . 173

ix

Chapter 1

Introduction

This dissertation is concerned with the problem of systematically generating

all partitions of a positive integer n. We shall argue in favour of a particular

method of encoding partitions for this purpose and demonstrate that this

encoding leads to algorithms that are significantly more efficient than those

that currently exist. We conduct this argument by comparing existing algo-

rithms with commensurable algorithms we develop using the new encoding.

The algorithms are compared by performing an indepth theoretical analysis,

and using these analyses to make qualitative and quantitative predictions

about the relative efficiencies of the algorithms. The accuracy of these pre-

dictions (and the validity of the chosen theoretical model) is then assessed by

empirical observation. In each case the algorithm using the encoding we pro-

pose is significantly more efficient than the existing algorithm. Furthermore,

the increase in efficiency is not obtained at the cost of increased complexity

of algorithmic expression: in each case the algorithms we propose are simpler

and more concise.

In Section 1.1 we discuss partitions and their importance in mathematics

and concrete applications. The subject of systematically generating com-

binatorial objects is an active research area and in Section 1.2 we discuss

some applications and provide references to the literature. In Section 1.3 we

precisely state the thesis we shall be defending and provide a brief outline of

the dissertation.

1

§ 1.1. Partitions

1.1 Partitions

A partition of a positive integer n is an unordered collection of positive

integers whose sum is n. For example, there are five partitions of 4 and

these can be represented as 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 3, 2 + 2 and

4. Partitions have been the subject of extensive study for many years and

the theory of partitions is a large and diverse body of knowledge. Par-

titions are a fundamental mathematical concept and have connections with

number theory [And76], elliptic modular functions [Sch86, p.224], Schur alge-

bras and representation theory [Mar99, p.13], derivatives [Yan00], symmetric

groups [Com55, BMSW54], Gaussian polynomials [AE04, ch.7] and several

other mathematical fields [AO01].

The theory of partitions has many applications. For example, partitions

can be used to model the possible outcomes of nuclear fission, where the

resulting fragments of the nucleus [Dés02] correspond to a partition of the

total number of protons and neutrons in the nucleus [Ski98, §1.3.6]. Par-

titions have also been used to develop a model of frequency fluctuations

in a quartz crystal resonator [Pla03], and several other physical applica-

tions [KKZL05, TMB04, GH99, Act94, Tem49]. The Rogers-Ramanujan

identities [BS05, §2], an important component in the theory of partitions,

have seen several significant applications in physics [BM98]. For instance,

“the Rogers-Ramanujan identities are crucial in studying the behaviour of

liquid helium on a graphite plate” [And05, §4]. Concepts closely related to

partitions also have applications in physics, such as group theory [Tun99,

p.65] and Young tableaux [Ful97], which are essential “in the analysis of

the symmetries of many electron systems” [Sch86, p.226]. Applications for

partitions also arise in biology. In population genetics partitions are used

in “models for the genetic variation of a set of gametes from a large popu-

lation” [Kin78], and related models apply in Brownian motion [Pit97] and

other important applications [FH98, HY97].

2

§ 1.2. Combinatorial Generation

1.2 Combinatorial Generation

Combinatorial generation algorithms allow us to systematically traverse all

possibilities in some combinatorial universe and have many applications in

the study of “organised complexity” [Bec64, p.xi]. For instance, combina-

torial generation algorithms are currently used to develop and elaborate

theoretical models for biological data (arising, for example, from genome

sequencing) [Sag00]. Combinatorial generation has also been suggested as a

means of simplifying the search for drug-like compounds [BBGP04], along

with other applications in computational chemistry [Saw01].

Combinatorial generation algorithms are also valuable from a mathemati-

cal perspective. Generation algorithms are useful to researchers investigating

the properties of some class of combinatorial object. By having a system-

atic and reliable procedure to generate all of the patterns of interest, we can

test hypotheses over much larger sets of data than otherwise possible. If a

particular hypothesis holds when applied to a large number of objects, we

may then begin the process of deriving a formal proof. The study of gen-

eration algorithms may also provide new mathematical insights and proofs.

For example, Nijenhuis & Wilf use a random selection algorithm to prove

an enumeration formula for Young tableaux [NW78, p.118–119]. (There is

an example of such interplay between algorithms and mathematics in this

dissertation. In Section 5.3.1 we develop a new algorithm to generate as-

cending compositions and the analysis of this algorithm allows us to prove

an enumeration formula for partitions on page 143.)

To allow us to be more concrete about what we mean by a ‘combinatorial

generation’ algorithm let us take a specific example. In Figure 1.1 we give

an example of a generation procedure and a consumer procedure. These ex-

amples are clearly trivial, but serve to illustrate the general points that we

shall be making. In this example we have a generation procedure G which

generates the sequences 1111, 112, 13, 22 and 4. The consumer procedure C,

using G to provide the values in question, then computes the product of

all parts in partitions of 4. (The product of all parts in partitions of n is

equal to the determinant of the character table of a symmetric group on n

3

§ 1.2. Combinatorial Generation

Procedure C()

p← 1
for all a1 . . . ak in G() do

for j ← 1 to k do
p← p× aj

end for
end for
return p

Procedure G()

aj ← 1 for j in {1, . . . , 4}
visit a1 . . . a4

a3 ← 2
visit a1 . . . a3

a2 ← 3
visit a1 . . . a2

aj ← 2 for j in {1, . . . , 2}
visit a1 . . . a2

a1 ← 4
visit a1 . . . a1

Figure 1.1: Example generation and consumer procedures. The generation
procedure generates all ascending compositions of 4 in lexicographic order,
and the consuming procedure uses these to compute the product of all parts
in partitions of n.

elements [SS84]; see also the corresponding sequence in the Online Encyclo-

pedia of Integer Sequences [Slo05, Seq.A007870].) Thus, C will receive the

sequences 1111, 112, 13, 22, 4 in that order, and will compute the value 96.

The generation algorithm G successively populates the array a with the

aforementioned sequences and each time a complete sequence is present in

the array, G makes it available to C. This is done using the visit key-

word [Knu04b, p.1], which makes the appropriate portion of the array avail-

able to C. Each time the visit keyword is invoked control is handed over

to C, which performs the relevant calculations. Then, each time C requests

another element from G, execution of G is resumed from the point that the

last visit statement was executed.

Digressing, for a moment, from the particular case of combinatorial gen-

eration, there are some software design advantages of the framework we have

just outlined. The consuming procedure C illustrates the advantages of using

generator algorithms in a more general sense. In the pseudocode description

we treat G exactly as if it were a data structure holding a set of sequences,

which we consider one at a time. Thus, using generator algorithms we can

simulate an arbitrarily large data structure using a finite amount of memory.

This is an extension of the well-known Iterator Pattern of object oriented

4

§ 1.2. Combinatorial Generation

software design [GHJV95, p.257]. Weihe [Wei01, §7.2] has discussed the ad-

vantages and disadvantages of algorithmic generators, and efforts have been

made to integrate the necessary language features into programming lan-

guages such as Sather [MOSS96] and Python [SPH01].

Returning to combinatorial generation, according to Flajolet, Nebel &

Prodinger, the “subject of random generation and exhaustive listing of com-

binatorial structures is currently an active one” [FNP06]. Most recently,

Mart́ınez & Molinero have developed a generic means of generating a range

of combinatorial objects [MM05], building on the work of Flajolet, Zim-

merman & Van Cutsem [FZC94] on the random generation and enumera-

tion of general combinatorial structures. In a forthcoming volume of The

Art of Computer Programming, Knuth provides algorithms to generate all

of the basic combinatorial patterns, including n-tuples [Knu04b], permuta-

tions [Knu04d], combinations [Knu04a], set and integer partitions [Knu04c],

and trees [Knu04e], along with providing a history of the subject of combi-

natorial generation [Knu04f]. In some cases, many different algorithms exist

to generate the same object. Indeed, in the case of permutations, Knuth

notes that “almost as many algorithms have been published for unsorting as

sorting” [Knu04d, p.1]. Sedgewick performed a survey of all known permu-

tation generation methods in 1977, when there were more than thirty known

algorithms [Sed77].

Generating the fundamental combinatorial patterns efficiently is an im-

portant problem, but it is also important to have efficient algorithms to

generate specific subsets of these patterns. For example, a subset of the bi-

nary n-tuples known as necklaces have been used to classify certain DNA se-

quences [CL97]. A necklace of n beads of k colours is an equivalence class of n-

tuples under rotation, and efficient algorithms have been published to gener-

ate necklaces [RSW92]. Furthermore, algorithms exist to generate restricted

classes of necklace such as binary unlabelled necklaces [CRS+00], fixed den-

sity necklaces [RS99] and bracelets [Saw01]. We can generate alternating

permutations [BR90] and permutations with a specified number of inver-

sions [ER03]. Generating binary trees has also been well studied: more than

thirty algorithms exist to accomplish this task [AS96]. Many more algorithms

5

§ 1.3. Thesis and Dissertation Overview

exist to generate classes of restricted tree, including free trees [WROM86],

rooted trees [BH80], plane trees [Nak02], ordered trees [Ska88], non-regular

trees [Er88], t-ary trees [Rus78, Tro78], 2-3 trees [GLW82], AVL trees [Li86]

and B-trees [GLW83, BS94]. There are algorithms to generate formally spec-

ified languages [Kem98] and for more specific cases such as generalised Dyck

languages [Lie03]. This list is far from exhaustive, and only a selection of the

available algorithms has been mentioned here.

The point of the previous paragraphs is to establish that it is consid-

ered important not only to have efficient generation algorithms for the basic

combinatorial patterns, but also to be able to efficiently generate restricted

classes of these basic patterns. We attend to both of these problems in this

dissertation: we design the most efficient known algorithm to generate all

partitions, and also algorithms to generate a large class of restricted parti-

tion, for which no generation algorithm currently exists.

1.3 Thesis and Dissertation Overview

To generate partitions efficiently we must encode these unordered collections

of positive integers as an ordered sum. For example, the ordered sums 1+1+2,

1 + 2 + 1 and 2 + 1 + 1 all represent the same partition of 4 but are unique

when the order of the parts is taken into consideration. Such ordered sums

are known as ‘compositions’, and we shall refer to compositions in which the

summands are arranged in nondecreasing order (e.g. 1+1+2) as ‘ascending’

compositions and those in which the summands are in nonincreasing order

(e.g. 2+1+1) as ‘descending’ compositions. Clearly, generating all ascending

or descending compositions of n will also provide us with all partitions of

n. Thus, we shall speak of encoding partitions as ascending or descending

compositions.

One goal of this dissertation is to demonstrate that it is fundamentally

easier to generate all ascending compositions than it is to generate all de-

scending compositions. This is an important result because all known al-

gorithms to generate partitions in lexicographic order actually generate de-

scending compositions. We have seen that partitions are a foundational math-

6

§ 1.3. Thesis and Dissertation Overview

ematical concept used to model a wide variety of natural processes and that

generation algorithms are a valuable tool in the process of accumulating reli-

able knowledge. An increase in the efficiency of generation algorithms widens

the range of the problems they may be applied to, and the theoretical in-

sights gained by the detailed study of ascending and descending compositions

deepens our knowledge of partitions themselves.

There is currently a noticeable lack of efficient algorithms to generate

classes of restricted partition. Ad hoc methods exist to generate partitions

with a limited set of restrictions, but no unified approach to the problem has

been presented. By encoding partitions as ascending compositions, however,

we open up the possibility of efficiently generating a wide variety of restricted

partition. In this dissertation we develop a coherent theoretical framework

within which we can concisely specify and efficiently generate partitions with

a flexible class of restriction imposed on the relationship between parts. We

call partitions defined within this framework ‘interpart restricted composi-

tions’ and we provide a simple means of enumerating these partitions and

several algorithms to efficiently generate them.

These are the high-level aims of this dissertation: to demonstrate that

generating all ascending compositions of n is less computationally intensive

than generating all descending compositions of n, and to provide a useful

theoretical framework for defining classes of restricted partition. In the in-

terest of rigour we shall be defending a particular thesis in the dissertation.

We now state this thesis and make our specific claims more precisely.

1.3.1 Thesis

The thesis defended in this dissertation is the conjunction of the following

subtheses. We discuss each of these in turn and refer to the sections of

the dissertation where the most pertinent evidence supporting each claim is

assembled.

7

§ 1.3. Thesis and Dissertation Overview

Subthesis 1. Important classes of restricted partition can be expressed con-

cisely by a function σ : Z+ → Z+.

Discussion. In Chapter 3 we develop the theory of interpart restricted com-

positions, a framework within which we can describe classes of restricted

partition using an integer function σ : Z+ → Z+. Combinatorially important

classes of restricted partition can be concisely described within this frame-

work. For example, the partitions into distinct parts are defined by the

function σ(x) = x + 1; the Rogers-Ramanujan partitions by σ(x) = x + 2;

and the Göllnitz-Gordon partitions by σ(x) = x + 2 + [x even]. The the-

ory of interpart restricted compositions is fully developed and exemplified in

Section 3.1.

Subthesis 2. It is possible to define an efficient algorithm to enumerate

partitions with restrictions expressed by such a function.

Discussion. In Section 3.2 we develop a general purpose recurrence equa-

tion to enumerate interpart restricted compositions for any instance of the

restriction function. We then define a dynamic programming enumeration

algorithm that computes the number of interpart restricted compositions for

all positive integers n ≤ N in O(N2) time and space.

Subthesis 3. It is possible to efficiently generate all restricted partitions

where the corresponding restriction function is nondecreasing.

Discussion. In Chapter 4 we develop algorithms to generate all interpart

restricted compositions of n for any nondecreasing instance of the restric-

tion function. In Section 4.2 we define a recursive algorithm; in Section 4.3

we define an abstract succession rule for interpart restricted compositions

and implement it as an iterative generation algorithm; and in Section 4.4

we develop some auxiliary theory and use this to improve the performance

of the direct succession rule. For each of the algorithms defined we prove

its correctness and prove that it has the required constant amortised time

property.

8

§ 1.3. Thesis and Dissertation Overview

Subthesis 4. It is possible to define algorithms to generate ascending compo-

sitions that are more efficient than the most efficient known commensurable

algorithms to generate descending compositions.

Discussion. In Chapter 5 we systematically compare the most efficient known

algorithms to generate the unrestricted partitions of n with concrete instan-

tiations of the algorithms we developed in Chapter 4. In each case, the

existing algorithms encode partitions as descending compositions (see Sec-

tion 2.2.3 for a discussion of encoding and descending compositions) because

of the current convention of concretely defining a partition as a descending

composition. We trace the origins of this convention in Section 2.2.2. The

algorithms we describe all generate ascending compositions, which encode un-

ordered partitions with equal validity. In Section 5.2.3 we compare Ruskey’s

recursive descending composition generator [Rus01, §4.8] with our commen-

surable ascending composition generator. In Section 5.3.3 we compare direct

implementations of the succession rules for ascending and descending com-

positions. Finally, in Section 5.4 we compare the most efficient examples of

ascending and descending composition generation algorithms (our acceler-

ated algorithm and Zoghbi & Stojmenović’s algorithm [ZS98] respectively).

In each case our ascending composition generation algorithm is significantly

more efficient, as is demonstrated in Section 5.4.3.

1.3.2 Dissertation Overview

Chapter 2 serves to establish the background for the results we shall de-

rive by examining the basic ideas of combinatorial generation and reviewing

all known partition and composition generation algorithms. Chapter 3 be-

gins the process of defending our thesis by introducing and exemplifying

interpart restricted compositions and establishing some fundamental results.

Chapter 4 proceeds by developing, analysing and proving the correctness

of three algorithms to generate interpart restricted compositions: a recur-

sive algorithm, a succession-rule and an ‘accelerated’ generation algorithm.

Chapter 5 proceeds by comparing the most efficient known examples of de-

scending composition generation algorithms with concrete instances of the

9

§ 1.3. Thesis and Dissertation Overview

algorithms developed in Chapter 4. Chapter 6 concludes this dissertation by

defending the above thesis and outlining some possibilities for future work.

10

Chapter 2

Literature Review

In Section 2.1 we briefly review the literature on combinatorial generation

in general, and examine the most basic issues that arise in any generation

algorithm: generation order and analysis. Then, in Section 2.2, we take a

more detailed look at partitions and compositions. We first examine the

basic properties of both objects, and then address the problem of how to

encode partitions efficiently for the purpose of generation. In Section 2.3

we systematically review all known generation algorithms for partitions and

compositions. We are interested in both algorithms to generate restricted

classes of partition and algorithms to generate all partitions, and we therefore

treat these cases separately. Finally, in Section 2.4 we summarise the state-

of-the-art in the relevant literature.

2.1 Combinatorial Generation

In this section we address the general issues common to all combinatorial

generation algorithms. We begin by identifying some resources that address

the problem of combinatorial generation explicitly in Section 2.1.1. Then, in

Section 2.1.2 we discuss the various orders that have been used to generate

combinatorial objects. In Section 2.1.3 we deal with the issue of the analysis

of generation algorithms, and discuss the metrics that have been proposed

to quantify the efficiency of generation. In Section 2.1.4 we review the prob-

11

§ 2.1. Combinatorial Generation

lems of random selection and ranking/unranking, which are closely related

to systematic generation.

2.1.1 General Background

The first systematic exposition on the subject of combinatorial generation

was presented by Lehmer [Leh64] who described generation algorithms for

permutations, combinations, partitions and compositions. Wells [Wel71,

ch.5], Reingold, Nievergelt & Deo [RND77, ch.5] and Page & Wilson [PW79,

ch.5] each dedicate a chapter to the problem of generating ‘elementary’

combinatorial configurations and provide algorithms to generate permuta-

tions, combinations and several other fundamental combinatorial patterns.

Sedgewick’s review of permutation generation methods [Sed77] provides many

deep insights into combinatorial generation. Nijenhuis & Wilf [NW78] pro-

vide both generation and random selection algorithms for several classes of

combinatorial pattern, including some lesser known objects such as Young

Tableaux [Ful97]. More recently, Stanton & White [SW86], Skiena [Ski90]

and Pemmaraju & Skiena [PS03] have provided algorithms to systematically

generate combinatorial objects as part of their wider treatment of combinato-

rial algorithms, as do Kreher & Stinson [KS98, ch.2]. Ruskey’s Combinatorial

Object Server [Rus05] provides a HTML interface to generation algorithms,

along with an information page, for many different combinatorial objects.

Two books of interest for this dissertation are currently in preparation.

Ruskey’s monograph [Rus01] is dedicated to combinatorial generation and

contains algorithms to generate many classes of object not covered in the ref-

erences given above. The second work is volume four of The Art of Computer

Programming, which deals extensively with the problem of combinatorial gen-

eration. Specifically, Knuth studies generating all n-tuples [Knu04b], permu-

tations [Knu04d], combinations [Knu04a], integer and set partitions [Knu04c],

and trees [Knu04e]. The history of combinatorial generation is also dis-

cussed [Knu04f], and the terminology and notation we use in this dissertation

is largely that advocated by Knuth [Knu04b, p.1].

12

§ 2.1. Combinatorial Generation

2.1.2 Generation Order

Lexicographic order is the most common generation order for combinatorial

objects. Lexicographic corresponds to the common ‘dictionary’ order and,

in certain instances, leads to direct and efficient generation algorithms. For

example, the binary 3-tuples in lexicographic order are

000, 001, 010, 011, 100, 101, 110, 111.

We can see that all tuples sharing a common prefix occur consecutively (e.g.,

010 and 011 share the prefix 01) and this is a property of lexicographic

generation algorithms in general. This property is useful, for instance, if

we are searching for a feasible solution to some problem and we have some

partial information about the solution. Kemp [Kem98] studied a general class

of lexicographic generation algorithm and derived powerful general results

concerning the complexity of generating all words of an ordered language in

lexicographic order.

After lexicographic order, the most commonly used ordering for gener-

ation is the Gray code (minimal change) ordering. A generation algorithm

that utilises a Gray code order generates objects such that successively vis-

ited objects differ in a small, pre-specified way. The canonical example is the

binary-reflected Gray code, which produces 3-tuples in the order

000, 001, 011, 010, 110, 111, 101, 100.

In the binary reflected Gray code order we transition between consecutive tu-

ples by flipping exactly one bit; in contrast, the lexicographic ordering above

needs to flip a maximum of three bits. Other examples of Gray code orders

include generating all permutations of 1 . . . n such that successive permuta-

tions differ only by interchanging one pair of adjacent elements [Knu04d, p.2]

and generating all k-subsets of an n element set so consecutive sets differ by

exactly one element [Knu04a, p.8]. A comprehensive survey of combinatorial

Gray codes and their applications has been compiled by Savage [Sav97]. A

variant on the idea of Gray codes has also been studied, where successive

13

§ 2.1. Combinatorial Generation

objects differ as much as possible [Wil89, ch.3].

Gray codes have two commonly attributed advantages over lexicographic

generation orders. Firstly, as the difference between consecutive objects is

small, it may be possible to implement these transitions highly efficiently.

(Bitner, Ehrlich & Reingold’s algorithm [BER76] to generate n-tuples in

binary-reflected Gray code order is “almost blindingly fast” [Knu04b, p.11],

as it requires only five assignment operations and one test for termination

to perform each transition.) Secondly, a minimal change order potentially

makes the consuming procedure significantly more efficient. If we know that

successive objects differ in some well-defined way, then it may be possible

to reduce the computation required when visiting each object. If we are

searching for a feasible solution to some particular problem we may also

improve the efficiency of the search as “it is likely that combinatorial objects

which differ in only a small way are associated with feasible solutions which

differ by only a small amount of computation” [Sav97].

Gray code generation is not necessarily more efficient than lexicographic

generation since the transition rules are rarely as simple as those required for

the binary-reflected Gray code exemplified above. For instance, Akl [Akl81]

performed an empirical analysis of nine different methods for generating com-

binations, and found that a lexicographic generator was more efficient than

the various Gray code schemes.

2.1.3 Analysis

When generating all combinatorial objects of a given class there is one es-

sential property required of the generation algorithms we define. We seek to

define generation algorithms in which the total time spent generating objects

is proportional to the number of objects generated. As we must systemati-

cally examine every object in the combinatorial universe U , then clearly the

minimum time required to generate all of these patterns is O(|U |). If the

total time is not proportional to the number of objects generated, given the

large number of objects we are potentially generating, systematic genera-

tion quickly becomes impracticable. This requirement, that the amount of

14

§ 2.1. Combinatorial Generation

time to generate all elements of U must be O(|U |), is the basic idea behind

the concepts of ‘loopless’ and ‘constant amortised time’ algorithms, although

there are some subtle and important differences between the two metrics.

An algorithm is said to be loopless [Ehr73b] if the amount of computa-

tion required between successive visits is bounded in advance and there is

never a long delay while a new pattern is generated [Knu04b, p.9]. A slightly

weaker requirement is that the amount of work to effect transitions is con-

stant on average: the total amount of work required to generate all of the

objects is proportional to the number of objects generated. An algorithm

satisfying this requirement is said to be constant amortised time [Rus01,

§1.7], as the total time required to generate each object is constant in an

amortised sense [CLR90, ch.18]. More precisely, we say that an algorithm

is constant amortised time if the average amount of time required to gen-

erate an element of U is bounded, from above, by some constant. Many

constant amortised time generation algorithms have been published, for ex-

ample Ruskey et al. [RECS94], Effler & Ruskey [ER03] and Boyer [Boy05].

Constant amortised time performance has been referred to as the “ultimate

goal in efficiency” [MM05] for combinatorial generation algorithms.

Note that if we are only considering the total amount of time required to

generate the combinatorial universe U the loopless and constant amortised

time properties tell us essentially the same thing: the total time will be

proportional to the number of elements in U . It is when we consider the

expected time required to generate a particular object in U that the difference

between the two properties arises. With a loopless algorithm the interval

between any two visits is guaranteed to be constant, whereas with a constant

amortised time algorithm the interval between any two particular visits may

not be constant. Thus, we can see that any loopless algorithm is constant

amortised time, but a constant amortised time algorithm is not necessarily

loopless.

Several concepts that are equivalent to either the loopless or constant

amortised time properties have been used in the literature to discuss the

performance of combinatorial generation algorithms. Goldberg [Gol93] for

instance, discusses the ‘delay’ (an algorithm with constant delay is loopless)

15

§ 2.1. Combinatorial Generation

or ‘cumulative delay’ (an algorithm with constant cumulative delay is con-

stant amortised time). Similarly, Zoghbi & Stojmenović [ZS98] speak of the

‘average delay’ of a generation algorithm and Barnes & Savage [BS97] speak

of the ‘average time’ required to generate objects. All of the aforementioned

concepts are equivalent to either the loopless or constant amortised time

properties and we shall use the terms ‘loopless’ or ‘constant amortised time’

to describe the performance of algorithms throughout this dissertation.

The loopless and constant amortised time properties provide us with a

useful high-level means of describing the performance of algorithms. In this

dissertation, however, we shall be making detailed comparisons of similar

algorithms. We shall therefore require a more sophisticated metric for com-

parison. In his general treatment of the problem of generating all words in

a formal language [Kem98], Kemp pioneered the use of counting the total

number of read and write operations. Kemp examines the general problem

of generating all words in a formal language L in lexicographic order. In his

formulation we consider the problem of transforming each word w ∈ L into

its immediate lexicographic successor w′. To do this we let w = uv, where u

is the longest common prefix of w and w′, and then generate the new suffix

v′, thereby obtaining w′ = uv′. The problem of generating w′ is then broken

into two steps:

1. scan w from right-to-left until we find the last letter of the prefix u;

2. attach the new suffix v′ to the end of u.

The complexity of this process can be quantified by counting the number of

letters of w we must scan to find the last letter of u (the number of read oper-

ations), and counting the number of new letters we must write to produce v′

(the number of write operations). By summing the total number of read and

write operations over all words in the language, we then know the complex-

ity of generating the language. Kemp then provides general results for the

complexity of generating all fixed-length words in a language and provides

specific results on the complexity of generating regular sets, permutations,

subsets, semi-Dyck words, Motzkin words, t-ary trees and ordered trees of

various kinds.

16

§ 2.1. Combinatorial Generation

It is essential to note here that Kemp’s method allows us to analyse the

difficulty of generation without reference to a specific implementation of an

algorithm. Indeed, Kemp’s own analyses depend only on the combinatorial

properties of the objects in question, and he pays attention to “algorithmic

aspects but for the sake of a complete presentation only” [Kem98, p.83].

He goes on to note that “the advantage of such a strict separation between

algorithmic aspects and aspects concerning complexity is quite obvious: Gen-

erally, there are many different encodings of the combinatorial objects to be

generated. We can determine the average running time for each of these

encodings first and then decide which encoding is worthwhile to explicitly

develop a generating algorithm.” The issue of encoding is intrinsic to this dis-

sertation, and so we shall adopt Kemp’s metric when performing our analyses

in later chapters.

2.1.4 Auxiliary Problems

The problems of ranking/unranking [MM01] and randomly selecting [NW75]

elements of a combinatorial universe U are closely related to the problem

of generating all elements of U . There are important distinctions between

these problems, however, and we therefore discuss the concepts of ranking,

unranking and random selection briefly in this subsection.

Given a listing of U in some order, the rank of a given object is the number

of objects preceding it in the list [KS98, p.31]. For example, here again are

the binary 3-tuples in lexicographic order where each tuple is accompanied

by its rank.

0 1 2 3 4 5 6 7

000, 001, 010, 011, 100, 101, 110, 111

A ranking algorithm determines the number of objects that precede a given

object in the listing. Thus, if we were asked to rank the tuple 100 in the

listing above we would return 4. An unranking algorithm does the opposite:

we return the object that occurs at a particular rank within a given list. Thus,

if we were asked to unrank the value 6 in the above list, we would return

17

§ 2.2. Compositions and Partitions

the tuple 110. Ranking and unranking algorithms can be obtained from

enumeration formulas using general techniques [NW78, ch.13]. More efficient

specialised algorithms also exist to rank and unrank many different types of

combinatorial object, including permutations [MR01], B-trees [GLW83], 2-3-

trees [GLW82], AVL-trees [Li86] and a generic class of labelled combinatorial

object [MM01].

Unranking algorithms can certainly be used as generation algorithms.

It is a simple matter to iterate through all possible ranks and to visit the

unranking of each. This approach is inefficient for two reasons. The first

reason is that, given that the number of configurations is likely to be large,

we will need to store and manipulate very large integers to perform the

unranking. Secondly, each unranking is treated as a separate problem and

does not reuse any shared elements of successive patterns.

Another closely related problem to combinatorial generation is the ran-

dom selection of combinatorial objects. In this problem we wish to select

one object from the combinatorial universe U such that all elements of U

have equal a priori probability of being selected [NW78, p.4]. Nijenhuis &

Wilf [NW75] have devised a general means of solving this problem, requir-

ing only a recurrence relation to enumerate the objects in the universe in

question. Flajolet, Zimmermann & Van Cutsem [FZC94] have developed a

very general approach for the random selection of decomposable combina-

torial structures, requiring only a specification of the structure in question.

Generating combinatorial objects at random is, in itself, a large area of study

— see Stojmenović [Sto92] for further references to the relevant literature.

2.2 Compositions and Partitions

The standard reference for the theory of partitions begins by “acknowledging

that the word ‘partition’ has numerous meanings in mathematics. Any time

a division of some object into subobjects is undertaken, the word partition is

likely to pop up” [And76, p.xiii]. This is also undoubtedly true of computer

science, where the term is used for many purposes. The term ‘composition’

is equally overloaded: we may speak of the composition of functions, the

18

§ 2.2. Compositions and Partitions

compositions of graphs and so forth. Indeed, we are likely to encounter

the word ‘composition’ any time the combining of parts to form a whole is

undertaken.

The purpose of this section is therefore largely terminological. In Sec-

tion 2.2.1 we examine the basic properties of compositions of integers, and

repeat this in Section 2.2.2 for partitions of integers. Then, in Section 2.2.3

we examine an issue that will dominate Chapter 5: the choice of encoding

for partitions for the purpose of systematic generation.

2.2.1 Compositions

A composition of a positive integer n is an expression of n as an ordered sum

of positive integers [Sta86, p.14]. A composition a1 + · · ·+ak = n can be rep-

resented by the sequence a1 . . . ak without loss of information. A composition

with exactly k summands (or parts) is referred to as a k-composition, and if

the k is omitted the number of parts is understood to be arbitrary, following

the conventions of Stanley [Sta86, p.14]. Enumerating compositions is triv-

ial: there are (as we shall see momentarily) 2n−1 unrestricted compositions

of n, and
(
n−1
k−1

)
k-compositions of n.

Compositions have many connections to other combinatorial objects. For

example, a direct correspondence between the k-compositions of n and the

(k − 1)-subsets of {1, . . . , n − 1} exists, and can be established using the

following bijective function. Given a k-composition a1 . . . ak, we define the

corresponding subset to be

θ(a1 . . . ak) = {a1, a1 + a2, . . . , a1 + · · ·+ ak−1},

thus demonstrating that the number of k-compositions of n is
(
n−1
k−1

)
, and

that the total number of compositions of n is 2n−1 [Sta86, p.14]. MacMa-

hon [Mac93, p.887-888] demonstrated a correspondence between the compo-

sitions of n and trees. MacMahon proved that there is a one-to-one corre-

spondence between the ways we can place q symbols between the summands

in the compositions of n and the trees of height q with n leaf nodes. Many

other correspondences between compositions and well-known objects exist.

19

§ 2.2. Compositions and Partitions

For example, the number of compositions with no occurrence of the sum-

mand 1 is equal to the (n − 1)th Fibonacci number [Gri01]. The theory of

compositions has also found applications to specific problems such as poly-

omino enumeration [Odl96, p.1104] and the four colour conjecture [Cas04,

p.62]. For further information on the theory of compositions see MacMa-

hon [Mac93, Mac08], MacMahon [Mac15, Vol.I Sec.IV] or Andrews [And76,

ch.3].

A useful graphical representation for compositions was introduced by

MacMahon [Mac93, p.836]. In this graphical representation we draw a line

of length n and mark each of the n − 1 internal unit divisions along the

line. Then, counting from the left hand side of the line, we put a (different)

mark at each point corresponding to a part of the composition. Thus, the

composition 214 becomes

u u
-�

2
-�

1
-�

4

in MacMahon’s graphical representation, as we have divided the line into

segments of size 2, 1 and 4. The binary correspondence with this graphical

representation is then obvious: for every point on the line, we record a 0 if the

point has not been marked, and a 1 if it has. Thus, 214 becomes 011000 in

what is know as the ‘binary difference representation’ [PW79, §5.4]. We can

also obtain this representation for an arbitrary composition a1 . . . ak more

directly. For each 1 ≤ j ≤ k, append aj − 1 copies of 0 and a single 1; and

finally strip away the last 1. Compositions can equivalently be viewed as

tilings of a 1-by-n board with 1-by-q (where q is arbitrary) tiles [CH03c]. In

this case we associate each part aj in the composition a1 . . . ak with a tile of

length aj. Thus, the total length of all the tiles is n, and each composition is

associated with a unique tiling. All compositions of 4 are given in Table 2.1,

along with the corresponding subset of {1, . . . , n−1}, tiling and binary (n−1)-

tuple in the difference representation.

Closely related to compositions are the representations of n as an ordered

sum of nonnegative parts — compositions where parts with value 0 are al-

20

§ 2.2. Compositions and Partitions

a1 + · · ·+ ak A ⊆ {1, . . . , n} Tiling b1 . . . bn−1

1 + 1 + 1 + 1 {1, 2, 3, 4} 111

1 + 1 + 2 {1, 2, 4} 110

1 + 2 + 1 {1, 3, 4} 101

1 + 3 {1, 4} 100

2 + 1 + 1 {2, 3, 4} 011

2 + 2 {2, 4} 010

3 + 1 {3, 4} 001

4 {4} 000

Table 2.1: All compositions of 4 with corresponding subsets of {1, . . . , n},
tilings of a 1-by-n board with 1-by-q tiles, and binary (n− 1)-tuples.

lowed. Following Stanley [Sta86, p.14] we refer to such ordered sums as weak

compositions (or when the number of parts is fixed, weak k-compositions).

We are not directly concerned with weak compositions in this dissertation

and only mention them here to avoid confusion. There has been an unfor-

tunate recent tendency in the literature on combinatorial generation to refer

to weak compositions as ‘compositions’ without the qualifying prefix. For

example, Pemmaraju & Skiena state that a “composition of n is a particular

arrangement of nonnegative integers that sums to n” [PS03, p.146]. (See

Nijenhuis & Wilf [NW78, ch.5] and Skiena [Ski90, p.60] for similar defini-

tions.) To further confuse matters, Bóna takes the opposite approach to

Stanley [Sta86, p.14]: he defines a composition as a collection of nonnegative

integers and a weak composition as a collection of positive integers [Bón02,

p.89].

We shall adhere to the MacMahon’s original definition of the term ‘com-

position’ [Mac93] in this dissertation in accordance with the majority of the

mathematical literature on the subject. See, for example, Andrews [And76,

p.54], Bóna [Bón04, p.46], Charalambides [Cha02, p.401], Comtet [Com74,

p.123], Dence & Dence [DD99, p.363], Goulden & Jackson [GJ04, p.51],

Heubach & Mansour [HM04], Finch [Fin03, p.293], Riordan [Rio58, p.107]

or Schumer [Sch04, p.154–155].

21

§ 2.2. Compositions and Partitions

2.2.2 Partitions

A partition of a positive integer n is an unordered collection of positive in-

tegers whose sum is n. We can therefore formalise a partition of n as a

multiset of positive integers that sums to n [GS96], as this encapsulates the

fundamental requirement that the summands are unordered. The function

p(n) is conventionally used to denote the number of partitions of n, and this

function has been the subject of much study — see Andrews [And76] for

information on the Hardy-Ramanujan-Radamacher formula for p(n). One

simple combinatorial interpretation of partitions is to consider the distribu-

tion of n identical balls into n identical urns [Knu04c, p.1]. For example, if

we have 3 balls and 3 urns the possibilities are

j j j jjj jj
j

{1, 1, 1} {1, 2} {3}

In each of the distributions the corresponding multiset of positive integers

is given. Partitions have numerous connections to disparate areas of math-

ematics which are beyond the scope of this dissertation. See Section 1.1 for

further references in this regard.

The multiset formalisation of partitions correctly encapsulates the re-

quirement that partitions are an unordered structure. It is, however, con-

ventional to define partitions as an ordered sequence of positive integers. For

example, Andrews defines a partition of n as a “a finite nonincreasing se-

quence of integers whose sum is n” [And76, p.xiii]. As there is a unique way

of writing any unordered collection in nonincreasing order, there is a unique

representation of each partition of n as such an ordered sum1.

It is therefore conventional to define a partition as a sequence of inte-

gers whose sum is n with parts in descending order. This fact is of great

importance to this dissertation, and so we shall take some care to trace the

historical reasons for the convention. In the late nineteenth century Sylvester

1For our purposes the terms ‘ascending’ and ‘descending’ are synonymous with ‘non-
decreasing’ and ‘nonincreasing’, respectively.

22

§ 2.2. Compositions and Partitions

et al. founded the modern combinatorial theory of partitions [And88]. Before

the work of Sylvester et al., the theory of partitions consisted largely of the

manipulation of algebraical identities [Har66] and rested on the “intuitive

observation of Euler” [Mac15, Vol.II Sec.VII ch.I]. Sylvester’s 1882 omnibus

paper [Syl82] summarises many of the results obtained in the “new method

of partitions”, and begins as follows.

In the new method of partitions it is essential to consider a parti-

tion as a definite thing, which end is attained by regularization of

the succession of its parts according to some prescribed law. The

simplest law for the purpose is that the arrangement of the parts

shall be according to their order of magnitude. [Syl82, emphasis

Sylvester’s]

Here, Sylvester initiates today’s convention of defining a partition as a se-

quence of integers, although he does not specify the particular order to be

applied. MacMahon developed Sylvester’s ‘constructive theory of partitions’

further, and made the definition of a partition more concrete.

A partition of a number may be regarded as any collection of

positive integers whose sum is equal to the number. There is no

specification of order amongst the numbers which are the parts

of the partition, and that being so, we may import into the def-

inition any order or arrangement that is convenient. There are

only two arrangements that are universally applicable. We may

in all cases arrange the parts either in descending order or as-

cending order of numerical magnitude. We choose the former of

these and make a new definition of a partition of a number, viz.:

“A partition of a number is any collection of positive integers ar-

ranged in descending order of magnitude whose sum is equal to

the number.”[Mac15, Vol.II p.91, emphasis MacMahon’s]

Sylvester and MacMahon considered it essential that partitions be given

a fixed ordering (the theory they established on this premise has been ex-

tremely successful [Pak05]) and the ordering that has emerged is the ‘de-

scending’ order. Many computations involving partitions are indeed more

23

§ 2.2. Compositions and Partitions

convenient if we enforce the descending order, but the choice seems to be,

fundamentally, an arbitrary one. It seems that MacMahon might equally

have chosen the ascending order.

There are exceptions to this rule. In one of the first texts on the subjects

of combinatorial computing, Lehmer [Leh64, p.25] states that the “composi-

tions of n whose components are monotone nondecreasing are called the un-

restricted partitions of n.” Tucker [Tuc84, p.240] defines a partition as a “col-

lection of positive integers” and states that “normally we write this collection

as a sum and list the integers in increasing order”. There have been several

recent examples in the applied and mathematical literature of partitions with

parts arranged in ascending order, such as Lecture-hall partitions [BME97a,

Yee01], non-squashing partitions [SS05], M -partitions [O’S04], in counting

the total number of parts in partitions [KR05] and in applications to molec-

ular symmetry [Öhr00, p.114].

The point of this historical digression is that all known partition gener-

ation algorithms have followed this standard convention of enforcing a de-

scending order on the parts in partitions. The consequences of generating

partitions with an ascending order on parts has not been considered. We

shall examine this problem in detail in Chapter 5. For now, we shall make

the problem a little more precise, by discussing the issue of encoding for

partitions in the next subsection.

2.2.3 Encoding Partitions

It is not controversial to state that the encoding we use to represent combina-

torial objects in memory affects the efficiency of generation. As Kemp noted,

“generally, there are many different encodings of the combinatorial objects

to be generated” [Kem98, §4]; not all of these encodings will lead to equally

efficient algorithms. Considering the problem in the case of partitions, we

appear to have three immediate options. The first choice is to encode par-

titions as an unordered multiset data structure. This provides us with the

most direct encoding of partitions as they are fundamentally defined as an

unordered structure. This approach, however, will inevitably lead to an inef-

24

§ 2.2. Compositions and Partitions

ficient generation algorithm because of the inherent difficulty of maintaining

an unordered structure in computer memory [CLR90, Sec.III]. Our other two

options encode partitions as an ordered structure, as a sequence of positive

integers in either ascending or descending order2. Such encodings mean that

we are generating a subset of the compositions of n, either the ascending or

descending compositions.

For the remainder of this dissertation we shall not speak of ‘partition’

generation algorithms, but of ascending or descending composition gener-

ation algorithms, depending on the encoding used. This distinction may

seem pedantic but, as we shall see in Chapter 5, there are real and impor-

tant differences between ascending and descending composition generation

algorithms. For the moment it will suffice to demonstrate that generating

ascending and descending compositions are at least different problems. We

do this by means of an example.

In this example we examine the sets of ascending and descending com-

positions of 5, A(5) and D(5) respectively, arranged in lexicographic order.

Each element in these sets corresponds to exactly one partition.

0 1 2 3 4 5 6

A(5) = 11111 1112 113 122 14 23 5

D(5) = 11111 2111 221 311 32 41 5

We can see in this example that the same partitions of n occur at ranks 0, 1

and 6, as, for example, the compositions 1112 and 2111 represent the same

partition. At all other ranks, however, the partitions represented are not

equal. Clearly then, generating ascending and descending compositions are

fundamentally different problems. We shall discuss this asymmetry in detail

in Chapter 5. For now it is sufficient to note that generating partitions is not

necessarily synonymous with generating descending compositions, and we

are therefore justified in identifying algorithms as ascending or descending

composition generators. Having established the basis for this terminological

2Binary encodings of partitions have also been considered in the literature [Com55];
generation algorithms utilising these encodings have not been investigated, and so we shall
not consider them further here.

25

§ 2.3. Generating Compositions

convention, we can now proceed with our review of all known composition

generation algorithms — ascending, descending or otherwise.

2.3 Generating Compositions

In Section 2.3.1 we discuss the particular details of the in-memory representa-

tion of compositions, and stress the distinction between this and encoding for

partitions. Then, in Section 2.3.2, we review the various orderings that have

been used in generating classes of composition. Section 2.3.3 then begins the

actual review of composition generation algorithms, where we consider the al-

gorithms that generate ‘unrestricted’ classes of composition. In Section 2.3.4

we then examine the algorithms that generate some class of restricted com-

position, and make the distinction between ‘local’ and ‘global’ restrictions.

Finally, in Section 2.3.5, we close this review of composition generation al-

gorithms by briefly examining some algorithms of more tangential interest.

2.3.1 Representations

In this section we review algorithms that generate some subset of the compo-

sitions of n. For particular classes of composition certain representations are

appropriate, which we shall briefly examine in this subsection. It is important

to note that the term ‘representation’ is distinct from our usage of ‘encoding’.

The encodings we are interested in are those that encode the partitions of n

in terms of some subset of the compositions of n. The term ‘representation’,

on the other hand, refers to the actual representation format of the compo-

sitions in computer memory. The distinction is admittedly a confusing one

and there is no rubicon between encoding on one hand and representation

on the other. Nevertheless, we shall persist with this distinction with the

understanding that when we speak of ‘encoding’ it refers to high-level con-

ceptual issues concerning the objects we are generating, and when we speak

of a ‘representation’ it is in terms of implementing a particular encoding as

a concrete generation algorithm.

26

§ 2.3. Generating Compositions

When generating the unrestricted compositions of n, the direct ‘sequence’

representation is most often used; to represent a composition a1 + · · ·+ ak =

n we simply store the sequence a1 . . . ak of its parts. (This representa-

tion is also known as the ‘signature’ representation by Lehmer [Leh64] and

Wells [Wel71].) Descending composition generators, on the other hand, use

one of three representations: the sequence representation, the ‘multiplicity’

representation or the ‘part-count’ representation. The sequence representa-

tion for descending compositions is precisely the same as for unrestricted

compositions: we store a composition d1 + · · ·+dk = n with d1 ≥ · · · ≥ dk as

the sequence d1 . . . dk. The multiplicity and part-count representations both

utilise the fact that equal parts are contiguous in descending compositions,

although they do it in slightly different ways.

In the multiplicity representation, the descending composition d1 + · · ·+
dk = n is stored as two separate sequences of positive integers, δ1 . . . δp and

m1 . . .mp, where p is the number of distinct parts in d1 . . . dk. As δ1 > · · · >
δp we have δ1 = d1 and δp = dk, and mj is the number of times part δj occurs

in d1 . . . dk. For example, in the multiplicity representation the descending

composition d1 . . . d5 = 55331 will be stored as the sequences δ1 . . . δ3 = 531

and m1 . . .m3 = 221: there are two parts of size 5, two parts of size 3 and

one part of size 1.

In the part-count representation we regard a descending composition of n

as an n-tuple of nonnegative integers c1 . . . cn, where n = c1 + 2c2 + · · ·+ncn;

c1 counts the number of 1s in the partition, c2 the number of 2s and so

on [Knu04c, p.3]. For instance, the descending composition 4211 becomes

the 8-tuple 21030000, since there are two parts of size 1, one part of size

2, zero parts of size 3, etc. The part-count representation has at least one

useful application. Fàa Di Bruno’s formula [Yan00] calculates the nth order

derivative of a composite function and requires as input all partitions of n

in part-count form [Kli73]. (The part-count representation is perhaps more

correctly regarded as an encoding. To do so would further complicate our

later discussions, as the concept of ordering becomes unclear, and so we shall

continue to refer to it as a representation.)

Note that both the part-count and multiplicity representations, although

27

§ 2.3. Generating Compositions

presented in terms of descending compositions, can equally be applied to

ascending compositions. We have phrased the explanations here in terms of

descending compositions because all of the existing algorithms that utilise

these representations generate descending compositions.

2.3.2 Generation Order

Unrestricted compositions are most commonly generated in lexicographic

order, but there is another ordering to be considered. Since there is a di-

rect correspondence between the unrestricted compositions of n and binary

(n − 1)-tuples, algorithms can be derived to generate compositions in or-

ders corresponding to the various orders defined over binary n-tuples. For

example, Knuth [Knu04b, ex.12] provides an algorithm to generate unre-

stricted compositions in an order corresponding to the binary-reflected Gray

code [Knu04b, p.3]. The order that arises for the compositions of 3 is

3(00), 21(01), 111(11), 12(10), (2.1)

where each composition is paired with its corresponding bit-string in the

difference representation in parentheses.

Several generation orders have been suggested in the case of descending

compositions. In Figure 2.1 we can see the descending compositions of 5

arranged in a binary tree. The root of this tree is the composition 11111,

and each node represents a unique descending composition of 5. The left

child of a given node is produced by replacing two parts of size 1 by one

part of size 2 (e.g., the left child of 311 is 32), and exists if and only if the

descending composition has at least two parts of size 1. The right child of

a given node is derived by removing one part of size 1 and increasing the

smallest non-1 part by 1 (e.g., the right child of 311 is 41), and exists if and

only if there is at least one 1 and there is exactly one copy of the smallest

part greater than 1. (See Fenner & Loizou [FL80, FL83] or Knuth [Knu04c,

ex.10] for a complete discussion of these operations and further properties

of this tree representation of the set of descending compositions.) Fenner

& Loizou [FL83] use the resulting binary tree to define three orders over

28

§ 2.3. Generating Compositions

221 311

2111

11111

32 41

5

�
��

�
��

�
��

@
@@

@
@@

@
@@

L-order = 11111, 2111, 221, 311, 32, 41, 5

M -order = 221, 2111, 32, 311, 41, 5, 11111

P -order = 221, 32, 5, 41, 311, 2111, 11111

Figure 2.1: Fenner & Loizou’s binary tree representation of the set of descend-
ing compositions of 5, and the orders corresponding to a inorder, preorder
and postorder traversal of this tree.

the set of descending compositions, corresponding to preorder, inorder, and

postorder traversals of the tree. These orders are referred to L-order, M -

order and P -order respectively, and the descending compositions of 5 in these

orders are given in Figure 2.1. L-order corresponds to lexicographic order.

Furthermore, we can consider the reverse of each of the orders associated

with the traversal of Fenner & Loizou’s tree, giving us a total of six orders

in which we can generate descending compositions derived from this tree.

In Savage’s [Sav89] Gray code order for descending compositions, the

succeeding composition is generated by adding 1 to one part and subtract-

ing 1 from another. For example, the descending compositions of 5 in this

minimal-change order are

11111, 2111, 311, 221, 32, 41, 5. (2.2)

(See also Knuth [Knu04c, p.15–17].) Subsequent work [RSW95] extended the

original Gray code to operate on restricted classes of descending composition,

where all parts are distinct, or all parts satisfy certain congruence conditions.

29

§ 2.3. Generating Compositions

2.3.3 Unrestricted Generators

In this subsection we shall consider the algorithms in the literature to gen-

erate the unrestricted compositions, ascending compositions and descending

compositions of a positive integer n. Many algorithms have been suggested,

which we shall attempt to categorise. Algorithms are discussed under the

headings of ‘recursive’ and ‘iterative’, as these strategies result in broadly

different generation algorithms, each with particular advantages and disad-

vantages. The algorithms examined here are ‘unrestricted’ in that they can

generate the entire set of compositions of interest if suitably invoked. It may

be possible to enforce further restrictions on the compositions visited; we

consider the problem of generating compositions with restrictions placed on

the parts in the next subsection.

Recursive Generators

The best-known recursive composition generation technique is Page & Wil-

son’s descending composition generation algorithm [PW79, §5.5], and the

closely related k-composition generator [PW79, §5.4]. Page & Wilson’s algo-

rithm operates by noting that a descending composition with largest part at

most m either begins with m or it does not. Those that begin with m can be

constructed by prepending m to all descending compositions of n −m with

largest part at most m. The descending compositions that do not contain m

are the descending compositions of n with largest part at most m− 1 [Ski90,

p.51]. Page & Wilson’s algorithms avoid the cost of generating and storing

large sets of compositions during generation by using a single array to store

the compositions involved. At each level of recursion an assignment is made

to a particular array index, effectively prepending that value to all composi-

tions generated by subsequent levels of recursion. Variants of this algorithm

have appeared in several texts, including Kreher & Stinson [KS98, p.68],

Skiena [Ski90, p.51] and Pemmaraju & Skiena [PS03, p.136]. Page & Wil-

son’s descending composition generator is, however, not constant amortised

time. Ruskey [Rus01, §4.8] improves Page & Wilson’s basic algorithm by ap-

plying ‘path elimination techniques’, and the resulting algorithm is constant

30

§ 2.3. Generating Compositions

amortised time. We study Ruskey’s algorithm in detail in Section 5.2.2.

The only known means of generating all ascending compositions in lex-

icographic order is a recursive algorithm due to de Moivre [dM97]. In de

Moivre’s method we generate the ascending compositions of n by prepend-

ing m to all ascending compositions of n−m, for m = 1, . . . , n [Knu04f, p.20].

Boyer’s [Boy05] algorithm also generates ascending compositions, but it gen-

erates compositions into a fixed number of parts (that is, k-compositions).

Boyer’s algorithm works on similar principles to Page & Wilson’s, and gen-

erates ascending k-compositions in constant amortised time.

Fenner & Loizou’s tree construction operations [FL80] can also be used

to recursively generate descending compositions in lexicographic order (or

any of the other five orders associated with Figure 2.1). Savage’s [Sav89]

Gray code construction can be implemented recursively to generate descend-

ing k-compositions in minimal-change order. Tomasi [Tom82] has defined

two recursive algorithms to generate all descending k-compositions. Both of

these algorithms, unfortunately, are thoroughly inefficient as they require the

computation, storage and subsequent reprocessing of large sets of composi-

tions.

Iterative Generators

The unrestricted compositions of n are in one-to-one correspondence with the

binary (n− 1)-tuples; consequently, there are many different approaches and

orders in which we can generate unrestricted compositions. Directly trans-

lating binary (n− 1)-tuples into compositions in the sequence representation

requires a linear pass through each tuple generated, and so a naive approach

— where we generate all binary (n−1)-tuples and compute the corresponding

composition for each tuple — will be inefficient. We can, however, convert the

original (n − 1)-tuple generation algorithm to directly output compositions

in the form that we require. Knuth [Knu04b, ex.12] gives an example of this

approach, where an algorithm to generate n-tuples in binary-reflected Gray

code order is modified to produce unrestricted compositions in the sequence

representation. Lehmer [Leh64, §1.7], Wells [Wel71, p.147], and Page & Wil-

31

§ 2.3. Generating Compositions

son [PW79, §5.4] proposed an algorithm to generate all compositions based

on the difference representation. This algorithm involves converting each in-

teger from 0 to 2n−1 − 1 to its corresponding composition in the sequence

representation, and is therefore more correctly regarded as an unranking al-

gorithm. The only other known approach to generating all compositions of n

is Nārāyan. a’s fourteenth century algorithm [Knu04f, ex.15], which generates

compositions in reverse lexicographic order.

Ehrlich [Ehr73a, Ehr73b] modified a composition generation algorithm to

produce a loopless k-composition generation algorithm. Two other iterative

algorithms have been published to generate unrestricted k-compositions and

both output compositions in lexicographic order. Hellerman & Ogden’s al-

gorithm [HO61] sequentially transforms the current k-composition into its

lexicographic successor until the final composition has been found. The al-

gorithm provided by Wells [Wel71, p.145] operates on similar principles.

It is widely accepted that the most efficient means of generating descend-

ing compositions is in reverse lexicographic order: see Andrews [And76,

p.230], Knuth [Knu04c, p.1], Nijenhuis & Wilf [NW78, p.65–68], Page &

Wilson [PW79, §5.5], Skiena [Ski90, p.52], Stanton & White [SW86, p.13],

Wells [Wel71, p.150] or Zoghbi & Stojmenović [ZS98]. McKay [McK70] refers

to reverse lexicographic order as the “natural order” for descending compo-

sitions. Many algorithms have been suggested to generate descending com-

positions in reverse lexicographic order, and all are based on the following

succession rule. Given a descending composition d1 . . . dk, we let q be the

index of the smallest part greater than 1 (thus, dj = 1 for q < j ≤ k). Then,

letting dq = x + 1, we obtain the next descending composition in reverse

lexicographic order by replacing the suffix (x + 1)1 . . . 1 by x . . . xr for the

appropriate remainder r ≤ x [Knu04c, p.1]. (We shall study this succes-

sion rule in detail in Section 5.3.2.) Many implementations of this particular

succession rule have been published in the sequence (e.g. McKay [McK70]),

multiplicity (e.g. Nijenhuis & Wilf [NW78, ch.9]) and part-count [Sto62b]

representations. Recently, Zoghbi & Stojmenović [ZS98] have improved on

the complexity of a direct implementation of this rule. By observing that

when dq = 2 we can implement the transition by setting dq = 1 and ap-

32

§ 2.3. Generating Compositions

pending an extra 1 to the end of the composition, Zoghbi & Stojmenović’s

provided a constant amortised time implementation of the succession rule.

(We shall study Zoghbi & Stojmenović’s algorithm in detail in Section 5.4.2.)

Knuth [Knu04c, p.2] uses the same idea, and provides an analysis of the re-

sulting algorithm [Knu04c, p.13].

This succession rule can be reversed to provide us with an algorithm to

generate all descending compositions of n in lexicographic order, and several

such algorithms have been published. Knuth [Knu94, p.147] and Zoghbi &

Stojmenović [ZS98] provide algorithms to generate descending compositions

in lexicographic order in the sequence representation. Reingold, Nievergelt

& Deo [RND77, p.193] and Fenner & Loizou [FL81] describe algorithms us-

ing the multiplicity representation. Fenner & Loizou thoroughly analyse

algorithms to generate descending compositions in the multiplicity represen-

tation in lexicographic and reverse lexicographic order [FL81], and compare

the total computation required for both orders. Klimko [Kli73] describes an

algorithm to generate descending compositions in lexicographic order using

the part-count representation (see also Knuth [Knu04c, ex.5]).

Algorithms implementing the lexicographic succession rules for descend-

ing compositions in the multiplicity or part-count representations can be

implemented looplessly [Ehr73b]. This is because we can directly update the

multiplicities of individual parts without needing to iterate to make copies

of a particular part. In practice, these algorithms tend to be less efficient

than their sequence representation counterparts, as a large cost can be in-

curred by the extra multiplications implied by this approach [Knu04c, ex.5].

In an empirical analysis, Zoghbi & Stojmenović [ZS98] demonstrated that

their sequence representation algorithms are significantly more efficient than

all known multiplicity and part-count representation algorithms.

Algorithms to generate descending k-compositions have also been pub-

lished. Gupta, Lee & Wong [GLW83] provide an algorithm to generate de-

scending k-compositions in lexicographic order as part of their methods for

ranking, unranking and generating B-trees. Riha & James [RJ76] provide

algorithms to generate descending k-compositions in reverse lexicographic

order, where an upper and lower bound on part values can be specified, or

33

§ 2.3. Generating Compositions

parts may be drawn from some extensionally defined set. Neither Gupta, Lee

& Wong’s nor Riha & James’ algorithms generate descending k-compositions

in constant amortised time.

Several iterative algorithms exist to generate ascending k-compositions.

The best known and most widely cited of these is Hindenburg’s [Dic52,

p.106][Knu04f, p.21] eighteenth century algorithm. Hindenburg’s algorithm

generates ascending k-compositions in lexicographic order (as do all other

published ascending k-composition generators) and is regarded as the canoni-

cal method to generate partitions into a fixed number of parts. Using Hinden-

burg’s algorithm, the successor of a given ascending k-composition a1 . . . ak

is found by scanning from right-to-left, stopping at the rightmost at such

that ak − at ≥ 2. We then replace aj by aj + 1 for t ≤ j < k and replace ak

by the remainder, ensuring that a1 + · · ·+ ak = n. See Knuth [Knu04c, p.2],

Andrews [And76, p.232] or Reingold, Nievergelt & Deo [RND77, p.191] for

a description of this algorithm and Knuth [Knu04c, p.14–15] for an analysis

of the algorithm implemented in the sequence representation. The algo-

rithm due to Narayana, Mathsen & Sarangi [NMS71] generates ascending

k-compositions, and using Stockmal’s algorithm [Sto62a] we can stipulate an

upper bound on part values.

There has been some recent interest in generating compositions in par-

allel. Akl & Stojmenović [AS93] provide a range of algorithms to generate

both descending compositions and unrestricted compositions in parallel. Akl

& Stojmenović modify the generation algorithms discussed above to oper-

ate in a parallel context, and devise efficiency measures suitable for parallel

generation.

In summary, many algorithms exist to generate a variety of classes of

composition in both lexicographic and reverse lexicographic order. All known

algorithms to generate unrestricted compositions, descending compositions

and ascending compositions are given in Table 2.2. Algorithms are classified

according to whether they generate compositions into a either a fixed or

arbitrary number of parts. Each algorithm is associated with the relevant

information: the representation used; whether the algorithm is iterative or

recursive; the order in which compositions are generated; and whether the

34

U
n
r
e
st

r
ic

t
e
d

C
o
m
p
o
si

t
io

n
s

D
e
sc

e
n
d
in

g
C

o
m
p
o
si

t
io

n
s

A
sc

e
n
d
in

g
C

o
m
p
o
si

t
io

n
s

Arbitraryk

N
ār

āy
an

.a
[K

nu
04

f,
ex

.1
5]
H
�

+
†

A
nd

re
w

s
[A

nd
76

,
p.

23
0]
H
�

+
de

M
oi

vr
e

[K
nu

04
f,

p.
20

]N
#

K
nu

th
[K

nu
04

b,
ex

.1
2]
F
�

+
†

B
os

co
vi

ch
[K

nu
04

f,
p.

21
]
N
�

Fe
nn

er
..
.

[F
L

80
]

N
�
×
†

Fe
nn

er
..
.

[F
L

80
]

H
�
×
†

K
lim

ko
[K

li7
3]

N
�
	
†

K
nu

th
[K

nu
94

,
p.

14
7]
N
�

+
K

nu
th

[K
nu

04
c,

p.
2]

H
�

+
†

K
re

he
r.
..

[K
S9

8,
p.

68
]
N
#

+
M

cK
ay

[M
cK

70
]

H
�

+
N

ije
nh

ui
s.
..

[N
W

78
,

ch
.9

]
H
�
×
†

P
ag

e.
..

[P
W

79
,
§5

.5
]
H
#

+
P

ag
e.
..

[P
W

79
,
§5

.5
]
H
�

+
R

ei
ng

ol
d.
..

[R
N

D
77

,
p.

19
3]
N
�
×
†

R
us

ke
y

[R
us

01
,
§4

.8
]
N
#

+
†

Sa
va

ge
[S

av
89

]
F
#

Sk
ie

na
[S

ki
90

,
p.

51
]
H
#

+
St

an
to

n.
..

[S
W

86
,

p.
13

]
H
�
×
†

St
oc

km
al

[S
to

62
b]

N
�
	

W
el

ls
[W

el
71

,
p.

15
1]
H
#

+
Z

og
hb

i.
..

[Z
S9

8]
N
�

+
†

Z
og

hb
i.
..

[Z
S9

8]
H
�

+
†

Fixedk

H
el

le
rm

an
..
.

[H
O

61
]

N
�

+
G

up
ta
..
.

[G
LW

83
]

N
�
×

B
oy

er
[B

oy
05

]
N
#

+
†

W
el

ls
[W

el
71

,
p.

14
5]
N
�

+
R

ih
a.
..

[R
J7

6]
H
�

+
H

in
de

nb
ur

g
[K

nu
04

c,
p.

3]
N
�

+
†

P
ag

e.
..

[P
W

79
,
§5

.4
]
H
#

+
T

om
as

i
[T

om
82

]
N
#

+
L

eh
m

er
[L

eh
64

,
p.

26
]
N
�

+
E

hr
lic

h
[E

hr
73

a]
F
�
†

N
ar

ay
an

a.
..

[N
M

S7
1]

N
�

+
St

oc
km

al
[S

to
62

a]
N
�

+

T
ab

le
2.

2:
C

om
p
ar

is
on

of
al

go
ri

th
m

s
to

ge
n
er

at
e

u
n
re

st
ri

ct
ed

,
d
es

ce
n
d
in

g
an

d
as

ce
n
d
in

g
co

m
p

os
it

io
n
s

in
le

x
ic

o-
gr

ap
h
ic

an
d

re
ve

rs
e

le
x
ic

og
ra

p
h
ic

or
d
er

.
T

h
e

n
u
m

b
er

of
p
ar

ts
is

ei
th

er
ar

b
it

ra
ry

or
fi
x
ed

.
T

h
e

sy
m

b
ol

s
ar

e
d
efi

n
ed

as
fo

ll
ow

s:
N

le
x
ic

og
ra

p
h
ic

or
d
er

,
H

re
ve

rs
e

le
x
ic

og
ra

p
h
ic

or
d
er

,
F

G
ra

y
co

d
e

or
d
er

;
�

it
er

at
iv

e,
#

re
cu

rs
iv

e;
+

se
q
u
en

ce
re

p
re

se
n
ta

ti
on

,
×

m
u
lt

ip
li
ci

ty
re

p
re

se
n
ta

ti
on

,
	

p
ar

t
co

u
n
t

re
p
re

se
n
ta

ti
on

.
†

in
d
ic

at
es

th
at

a
p
ar

ti
cu

la
r

al
go

ri
th

m
is

co
n
st

an
t

am
or

ti
se

d
ti

m
e

an
d
..
.

in
d
ic

at
es

th
at

th
e

au
th

or
li
st

is
in

co
m

p
le

te
.

35

§ 2.3. Generating Compositions

algorithm has been proved to generate compositions in constant amortised

time. Some clear patterns emerge from this table, which we shall discuss in

the conclusion of this chapter.

2.3.4 Restricted Generators

In this subsection we are concerned with restricted generation algorithms: al-

gorithms that efficiently generate some well-specified subset of the six classes

of composition identified in Table 2.2, i.e., the unrestricted, ascending and

descending compositions and k-compositions. All of the algorithms discussed

in the previous section are said to be ‘unrestricted’ in that they generate com-

plete sets of compositions when suitably invoked. Some of these algorithms

allow us to stipulate some further restrictions on the parts, and we shall

discuss these algorithms again where necessary.

We consider here only restrictions that are not trivial to impose. If, for

example, we are generating descending compositions in reverse lexicographic

order, we can easily restrict the value of the largest part. We can, for instance,

ensure that the largest part is no greater than m by first computing the

lexicographically largest descending composition d1 . . . dk of n such that d1 =

m and iteratively apply the succession rule discussed on page 32. Similarly,

when we are dealing with ascending compositions, it is trivial to restrict the

value of the smallest part in the corresponding partitions. It is also usually

quite simple to modify algorithms to ensure that only compositions with a

maximum number of parts are visited.

We shall discuss restricted composition generation under two headings:

‘local’ and ‘global’ restrictions. Local restrictions are defined as specifying

restrictions on individual parts, for example each part is at least m, or each

part is odd, or each part is an element of some pre-specified set. Global

restrictions, on the other hand, restrict the entire composition, and may

require complex interrelationships between parts. An example of a global

restriction is the requirement that all parts be distinct: this is not a local

restriction because the restriction is only defined in terms of the other parts.

36

§ 2.3. Generating Compositions

Local Restrictions

An algorithm enforces a local restriction on generated compositions if we can

specify some bounds or congruence conditions on each part. Several algo-

rithms exist to enforce magnitude restrictions on ‘unrestricted’ compositions.

Nārāyan. a’s algorithm [Knu04f, ex.15] allows us to generate compositions

where all parts are no greater than some specified value. Ehrlich [Ehr73a,

Ehr73b] provides an algorithm to generate all k-compositions lower-bounded

by a sequence of values l1 . . . lk: for all k-compositions a1 . . . ak visited by

Ehrlich’s algorithm, we will have l1 ≤ a1, . . . , lk ≤ ak. An algorithm given by

Wells [Wel71, p.145] allows us to generate k-compositions with a stipulated

upper and lower bound on part values.

Algorithms due to Riha & James [RJ76] allow us to generate descend-

ing k-compositions with a flexible set of restrictions. The first algorithm is

a method to generate descending k-compositions with an upper and lower

bound on part values (as well as specifying a minimum interpart distance

— we discuss this algorithm further under the heading of global restrictions

later in this subsection). The second algorithm developed by Riha & James

generates descending k-compositions where the parts must belong to some

extensionally defined set. The algorithm also allows us to restrict the number

of times a particular value appears in compositions. A slightly different ver-

sion of this problem has been studied by Horowitz & Sahni [HS74], and was

subsequently expanded on by Rubin [Rub76]. In this problem we are given a

sequence s1 . . . sr of values and we must generate all combinations of values

from this sequence that sum to n. More precisely, the algorithms generate

all sequences b1 . . . br, where each bj ∈ {0, 1}, such that b1s1 + · · ·+ brsr = n.

Horowitz and Sahni propose a number of solutions based on backtracking

search and examine applications to the knapsack problem. Rubin [Rub76]

criticises some of the heuristics adopted by Horowitz & Sahni, and provides

a number of alternatives which are evaluated empirically.

The algorithms of Riha & James [RJ76], Horowitz & Sahni [HS74] and

Rubin [Rub76] are very general but do not generate compositions in con-

stant amortised time. More efficient approaches exist for some specialised

37

§ 2.3. Generating Compositions

local restrictions. Binary descending compositions (i.e., where all parts are

powers of 2) can be generated looplessly [Knu04c, ex.64] using a Gray code

sequence [CK05] in which each step replaces a part of size 2j + 2j by one

of size 2j+1, or vice-versa. Bhatt provides a method to generate descending

compositions in which all parts are 2j − 1 (e.g. 7311 has the required form),

and demonstrates the applications of such partitions to cryptographic prob-

lems [Bha99]. Boscovich [Knu04f, ex.30] described an algorithm to generate

descending compositions where all parts are 1, 7 or 10. Rasmussen, Savage

& West [RSW95] developed a Gray code construction over descending com-

positions satisfying certain congruence conditions which can be implemented

to generate, for example, descending compositions into strictly odd parts.

Ruskey also provides an algorithm to generate descending compositions into

odd parts [Rus05].

Global Restrictions

Local restrictions allow us to specify restrictions on individual parts of com-

positions, but we can also specify restrictions that apply to all parts. Global

restrictions specify some required relationship between all parts in compo-

sitions, and there are many possible restrictions of this type. As an exam-

ple, Coleman & Taylor’s algorithm [CT71] generates k-compositions that are

equivalence classes under cyclic rotation, which they refer to as ‘circular’

compositions. The circular 3-compositions of 8 are

116, 125, 134, 143, 152, 224, 233. (2.3)

The subset of the 3-compositions of 8 in this example are not specified in any

way by the magnitude of the individual parts. They are restricted, rather, by

a required relationship between parts. Each composition in this example is

an equivalence class under circular rotation; thus, only the composition 116,

and not 611 or 161, appears in (2.3) as they are all equivalent under circular

rotation.

Several varieties of global restriction relating to graphs have been studied.

A descending composition d1 . . . dk is said to be graphical if it is the degree

38

§ 2.3. Generating Compositions

sequence of some simple graph (i.e., a graph that can be drawn without

multiple edges or loops). As the sum of the degrees of the vertices in an

undirected graph is equal to twice the number of edges, a necessary condition

for a composition of n to be graphical is that n is even [NSST98]. For

example, the composition 433222 is graphical, as it is the degree sequence of

the graph

r
r

r

r

r
r�

�
�

@
@
@

�
�
�

@
@
@

@
@

@
@
@
@

3

2

4

3

2

2 (2.4)

in which each node is labelled with its degree. The problem of generat-

ing all the graphical partitions, or more precisely, the graphical descend-

ing compositions, has been studied. Barnes & Savage [BS97] give a con-

stant amortised time algorithm to generate all graphical partitions. Nolan et

al. [NSST98] provide an algorithm to generate all graphical basis partitions,

which are the graphical partitions that are also basic. (Each basis parti-

tion is uniquely identified by a given rank vector, a quantity relating to the

conjugate of a given partition and its Durfee square — see Nolan, Savage

& Wilf [NSW98] for information on these partitions and the aforementioned

concepts.) Ruskey et al. [RECS94] present an algorithm to generate all pos-

sible degree sequences of length n and James & Riha [JR76] provide an

algorithm to generate all of the graphs which correspond to a given graphi-

cal partition (for example, (2.4) is not the only graph corresponding to the

degree sequence 433222).

Another class of global restriction related to graphs has been studied. A

round-robin tournament can be seen as a complete directed graph [RECS94].

A sequence a1 . . . ak is a score vector of a round-robin tournament if a1 ≤
· · · ≤ ak, a1 + · · · + aj ≥

(
j
2

)
for 1 ≤ j < k and a1 + · · · + ak =

(
k
2

)
(note that in this instance, the restriction has been defined on ascending

compositions). Narayana, Mathsen & Sarangi [NMS71] provide an algorithm

to generate all score vectors. Ruskey et al. [RECS94] provide two simple

recursive algorithms to generate round-robin tournament score vectors, both

of which have empirically observed constant amortised time performance.

39

§ 2.3. Generating Compositions

Round-robin tournament score vectors may also be computed as a special

case of an algorithm that computes all descending compositions majorised by

a given descending composition and which majorise another [Knu04c, ex.56].

(A descending composition d1 . . . dk majorises the descending composition

e1 . . . el if d1 + · · ·+ dj ≥ e1 + · · ·+ ej for all j ≥ 0 [Knu04c, ex.54]. A related

concept is the lattice of integer partitions [Bry73, LP00].)

A number of techniques have been developed to generate ascending and

descending compositions into distinct parts (that is, where all parts in the

compositions are different). Boyer [Boy05] demonstrates the simple modifi-

cations required to his ascending k-composition generator to ensure that all

parts are distinct. Furthermore, these modifications preserve the constant

amortised time property of Boyer’s algorithm. Rasmussen, Savage & West’s

Gray code construction [RSW95] can be implemented to generate descend-

ing compositions with distinct parts. Using Riha & James’s algorithm [RJ76]

to generate descending k-compositions into prescribed parts, we can gener-

ate descending k-compositions into distinct prescribed parts, by limiting the

number of occurrences of each part to 1. Similarly, we can use Horowitz &

Sahni’s [HS74] or Rubin’s [Rub76] algorithms to generate compositions into

distinct parts by suitably invoking the algorithms. Ruskey also provides a

non constant amortised time algorithm to generate descending compositions

into distinct odd parts [Rus05].

Riha & James’s algorithm [RJ76] to generate bounded descending k-

compositions can also be used to generate descending k-compositions into

distinct parts. More generally, it allows us to specify a minimum interpart

distance δ such that for each descending k-composition d1 . . . dk visited we

will have dj − δ ≥ dj+1 for 1 ≤ j < k. Thus, by setting δ = 1 we obtain

descending k-compositions such that d1 > · · · > dk.

2.3.5 Miscellaneous Algorithms

In this subsection we review some algorithms of more tangential interest to

this dissertation. Some of the algorithms mentioned are not true generation

algorithms and some are generation algorithms but not for compositions of in-

40

§ 2.3. Generating Compositions

tegers. We first consider ranking/unranking and random selection algorithms

(see Section 2.1.4) for various classes of composition. We then summarise

some algorithms for objects closely related to partitions and compositions,

and finish by briefly reviewing the literature on weak k-compositions (i.e.

compositions into nonnegative parts).

Many ranking and unranking algorithms exist for varieties of composition.

In the case of the unrestricted compositions and k-compositions the problem

is easily solved because convenient enumeration formulas exist, and is an easy

application of more general techniques [NW78, ch.13]. (See Lehmer [Leh64,

§1.7], Wells [Wel71, p.147] or Page & Wilson [PW79, §5.4] for an unranking

algorithm for compositions based on the binary-difference representation.)

Ranking and unranking algorithms are also known for descending composi-

tions. McKay developed algorithms to rank [McK65c] and unrank [McK65b]

descending compositions. White generalised McKay’s work to give an algo-

rithm to unrank descending compositions with a lower bound on part val-

ues [Whi70b]. Several texts provide methods to rank and unrank descending

compositions: see Wells [Wel71, p.151], Stanton & White [SW86, p.14] and

Kreher & Stinson [KS98, p.77–78].

Random selection algorithms for unrestricted compositions are also eas-

ily obtained from general techniques [NW75] because of the existence of

simple enumeration formulas. Nijenhuis & Wilf’s algorithm [NW78, ch.10]

for the random selection of partitions remains the canonical method — see

Reingold, Nievergelt & Deo [RND77, p.193–196], Skiena [Ski90, p.58] or

Knuth [Knu04c, ex.47] for implementations of the algorithm.

Nijenhuis & Wilf [NW78, ch.14] provide algorithms to randomly select

and generate Young Tableaux; Bratley & McKay [BM67] present an al-

gorithm to generate multi-dimensional partitions [And76, ch.11]. Knuth

provides an algorithm to generate partition graphs in the Stanford Graph-

base [Knu94, p.145–149]. A partition graph (not to be confused with graph-

ical partitions, see Section 2.3.4) is a graph of a set of partitions, where each

partition is a node in the graph. Two nodes in this graph are adjacent if one

can be obtained by combining two parts in the other (each arc in the graph

41

§ 2.4. Summary

is of length 1). For example, the partition graph of 5 is

r r
r

r

r

r
r��

��
��

H
HHH

HH�
�
�
�
�
�@

@
@
@
@
@

HH
HH

HH

�
���

��

11111
1112

113

122

23

14

5 . (2.5)

We can see in (2.5) that 113 and 122 are both adjacent to 23, as we can

obtain 23 by either adding together two 1s in 113 or adding a 1 and a 2 in

122. For further information see Knuth [Knu94, p.35,145].

While weak k-compositions are not of direct relevance to this disser-

tation, we can quickly summarise the available algorithms in the interest

of completeness. Nijenhuis & Wilf provide algorithms to efficiently gener-

ate [NW78, ch.5] and randomly select [NW78, ch.6] weak k-compositions.

Skiena [Ski90, p.61] and Knuth [Knu04a, ex.3] also provide algorithms to

generate weak k-compositions. Klingsberg [Kli82] (see also Wilf [Wil89])

developed a Gray code for weak k-compositions, which Walsh [Wal00] has

extended to weak k-compositions with bounds on the part values (see also

Knuth [Knu04a, ex.59–62]). Bitner, Ehrlich & Reingold [BER76] consider

the generation of weak k-compositions as an application of their algorithm

to generate binary n-tuples with exactly k 1-bits in the binary reflected Gray

code order. Knuth [Knu94, p.127–128] provides an algorithm to generate

all weak k-compositions of n where all parts are square, i.e., all solutions

of a2
1 + · · · + a2

k = n where each aj is nonnegative. This problem occurs in

the context of constructing a graph based on the moves of generalised chess

pieces on a generalised chessboard [Knu94, p.122].

2.4 Summary

There are a number of trends we should note from the literature that are

important to contextualise the remainder of this dissertation which we shall

attempt to illustrate here. The first trend of note is that almost all known

42

§ 2.4. Summary

‘partition’ generation algorithms generate descending compositions. As we

noted in Section 2.2.3, descending composition are only one possible encod-

ing for partitions. Although ascending compositions are an equally valid

encoding, the possibility has not been considered because of the tendency in

the literature to literally define partitions as descending compositions, as we

saw in Section 2.2.2. Thus, we can see that although there is a large num-

ber of different ‘partition’ generation algorithms, by sharing the common

property of generating descending compositions, an equally large space of

possible algorithm designs has been largely uninvestigated, as illustrated in

Table 2.2. In chapters 4 and 5 we perform the first systematic investigation

of algorithms drawn from this design space.

The second trend from the literature we would like to call attention to

here is the lack of a unified approach to specifying and generating restricted

partitions. Ad hoc techniques exist to generate partitions with both local and

global restrictions. (Recall that a ‘local’ restriction is defined as a restriction

placed on individual parts, whereas ‘global’ restrictions are enforced on all

parts.) With the exception of Riha & James’ algorithms [RJ76] which are not

constant amortised time, there has been no attempt made to generate a class

of restricted partition. In the next chapter we begin the task of redressing

this shortcoming in the literature by introducing a coherent framework within

which we can express a wide variety of global restrictions.

43

Chapter 3

Interpart Restricted

Compositions

In Section 3.1 we define the interpart restricted compositions framework and

demonstrate, via examples from the combinatorial literature, how this frame-

work can be instantiated and the types of restriction we can impose on

partitions. In Section 3.2 we develop the first concrete application of this

framework and provide a simple, general means of counting interpart re-

stricted compositions. Finally, in Section 3.3 we summarise the content of

this chapter.

3.1 An Algorithmic Framework

In this section we develop an algorithmic framework for generating par-

titions with a flexible class of restrictions placed on the parts. For rea-

sons that will become apparent, we refer to this framework and the objects

defined under its formalisms as ‘interpart restricted compositions’. Sev-

eral other generic approaches to defining classes of restricted partition and

composition have been proposed, each of which is unsuitable for our pur-

poses [MM05, BBGP04, CS04, BC05]. The framework proposed by Mart́ınez

& Molinero [MM05] provides a general means of generating combinatorial

classes including trees, permutations and set partitions. As such, their frame-

44

§ 3.1. An Algorithmic Framework

work is more general than we require since we wish to defend a particular

thesis specific to classes of partition. Similarly, the specifications of combi-

natorial objects used by Bacchelli et al. [BBGP04] are not limited to par-

titions and compositions and are therefore more general than we require.

The means of specifying general restrictions on partitions and compositions

proposed by Corteel & Savage explicitly encode partitions as descending com-

positions [CS04]. Since we are defending the thesis that it is more difficult

to generate all descending compositions than it is to generate all ascending

compositions, we cannot base our general algorithms on their framework.

Finally, Bender & Canfield’s framework [BC05] allows us to specify a flexi-

ble class of restriction on compositions but is not immediately amenable to

defining classes of restriction on partitions, and therefore also falls outside

the scope of this dissertation.

Interpart restricted compositions allow us to easily specify classes of re-

stricted partition. The restrictions are defined by an integer function which

provides us with both a concise and efficiently implementable representation

format. The framework is designed specifically with the efficiency of gener-

ation in mind and, as we shall see in the next chapter, the algorithms that

arise are both simple and efficient. Before we define generation algorithms

we must develop a concrete foundation for the framework and demonstrate

the type of restriction that we may impose.

In Section 3.1.1 we develop the basic definitions required for the frame-

work, and establish the notational conventions we shall be utilising for the

remainder of this dissertation. Then, in Section 3.1.2 we develop the funda-

mental results that are the basis of all our subsequent work with interpart

restricted compositions. Finally, in Section 3.1.3 we demonstrate how the

framework may be instantiated to describe important classes of restricted

partition from the literature.

3.1.1 Definitions and Notational Conventions

In this subsection we shall define the fundamental concepts necessary for the

interpart restricted compositions framework. Before defining the concepts

45

§ 3.1. An Algorithmic Framework

in question we discuss the notational and terminological conventions used

in the remainder of the dissertation. The most fundamental notation we

require concerns sequences of integers and as we shall be performing many

operations over sequences we require some specific notation.

Ordinarily, we denote a sequence of integers as a1 . . . ak, which denotes a

sequence of k integers indexed a1, a2, etc. When referring to short specific

sequences it is convenient to enclose each element using 〈 and 〉. Thus, if we

let a1 . . . ak = 〈3〉〈23〉, we have k = 2, a1 = 3 and a2 = 23. We will also use

the idea of prepending a particular value to the head of a sequence: thus,

the notation 3 · 〈23〉 is the same sequence as given in the preceding example.

In defining the classes of partition and composition which we are in-

terested in we shall often use Iversonian brackets [GKP94, p.24], as this

technique allows us state some of the restrictions we wish to impose very

concisely. An Iversonian condition consists of some logical statement s en-

capsulated in brackets. Then, if s is true, [s] = 1 and if s is false, [s] = 0.

For example, [x even] = 0 and [x prime] = 1 when x = 3.

Other notational devices will be utilised throughout the dissertation,

which we shall introduce where necessary. We begin the development of

interpart restricted compositions by formally defining the basic property of

interpart restriction and then define the required enumeration and set func-

tions. We then define the concept of initial part feasibility, providing us with

sufficient formal concepts to develop the basic theory of interpart restricted

compositions.

Definition 3.1 (Composition). A sequence of positive integers a1 . . . ak is a

composition of the positive integer n if a1 + · · · + ak = n. A composition

a1 . . . ak with a fixed number of parts k is known as a k-composition.

Definition 3.2 (Interpart Restricted Sequence). A sequence of positive in-

tegers a1 . . . ak is interpart restricted by the function σ : Z+ → Z+ if σ(aj) ≤
aj+1 for 1 ≤ j < k.

Then, combining Definitions 3.1 and 3.2, we can see that a composition

a1 . . . ak of n is interpart restricted by the function σ (or equivalently, a1 . . . ak

is an interpart restricted composition of n and σ) if the sum of all the parts

46

§ 3.1. An Algorithmic Framework

is n, and σ(aj) ≤ aj+1 for 1 ≤ j < k. This definition is the key definition of

the interpart restricted compositions framework, and specifies a set of k − 1

inequalities on each composition with k parts. Each inequality states that

for a given part aj, the value σ(aj) must be less than or equal to the part

aj+1. This system of k− 1 inequalities can be viewed figuratively as follows:

σ(a1) ≤ a2

σ(a2) ≤ a3

...

σ(ak−1) ≤ ak

. (3.1)

As we shall see in the next section, this model of embedding an integer

function into a system of inequalities can represent many classes of restricted

partition from the literature.

We shall also regularly refer to the set of all compositions of n inter-

part restricted by σ and, correspondingly, the number of compositions of n

interpart restricted by σ. Formally, we have the following definitions.

Definition 3.3 (Set of Interpart Restricted Compositions). For some pos-

itive integer n and a function σ : Z+ → Z+, let Cσ be a function such that

a1 . . . ak ∈ Cσ(n) iff a1 . . . ak is composition of n which is interpart restricted

by σ.

Determining if a given sequence a1 . . . ak is an element of the set Cσ(n)

is an important problem, and so we shall codify the requirements of Defini-

tion 3.3 into three necessary and sufficient conditions:

1. aj ∈ Z+ for 1 ≤ j ≤ k;

2. a1 + · · ·+ ak = n;

3. σ(aj) ≤ aj+1 for 1 ≤ j < k.

Thus, if all three of these conditions hold true, we know that a given sequence

must be an element of the set Cσ(n).

47

§ 3.1. An Algorithmic Framework

Definition 3.4 (Number of Interpart Restricted Compositions). For some

positive integer n and a function σ : Z+ → Z+, let Cσ be a function such

that Cσ(n) = |Cσ(n)|.

Thus, the function Cσ(n) is defined as the set of all compositions of n in-

terpart restricted by σ and Cσ(n) is the number of compositions of n interpart

restricted by σ.

Given a sequence a1 . . . ak, its initial part is a1, and so every nonempty

sequence has an initial part. For computational purposes we require an

overloaded version of set and enumeration functions in which we restrict the

value of the initial part of all compositions a1 . . . ak in Cσ(n). Thus, we let

Cσ(n,m) be the set of all compositions of n interpart restricted by σ where

the initial part is at least m. Formally,

Cσ(n,m) = {a1 . . . ak | a1 . . . ak ∈ Cσ(n) ∧ a1 ≥ m},

and then define Cσ(n,m) as the number of compositions of n interpart re-

stricted by σ where the initial part is at least m, i.e. Cσ(n,m) = |Cσ(n,m)|.
The final formal device we require is the concept of initial part feasibility,

which we shall define in a specific technical sense.

Definition 3.5 (Feasible Initial Part). Let n be a positive integer and σ :

Z+ → Z+ be some function. A positive integer x is a feasible initial part for

n and σ if and only if there exists some a1 . . . ak ∈ Cσ(n) such that a1 = x.

Thus, a positive integer x is a feasible initial part for n and σ if and

only if there is some composition of n interpart restricted by σ such that the

initial part is equal to x. Correspondingly, a positive integer x is an infeasible

initial part for n and σ if and only if there is no a1 . . . ak in the set Cσ(n)

such that a1 = x. Determining the feasibility of a given x for some n and σ

is an important aspect of both our enumeration and generation techniques.

Intuitively, if we can efficiently determine whether a given x is infeasible, we

can be assured that no ‘dead ends’ will be explored when enumerating and

generating interpart restricted compositions.

48

§ 3.1. An Algorithmic Framework

3.1.2 Fundamental Results

In this subsection we develop some fundamental results that are the basis

of our enumerative and generative techniques. Three fundamental results

are proved here. We prove that the set Cσ(n) always contains the singleton

composition 〈n〉. We then develop necessary and sufficient conditions, which

can be evaluated efficiently, to determine if a value x is a feasible initial part

for some n and σ. Finally, we prove the fundamental bijection which allows

us to decompose problems in terms of the interpart restricted compositions

of n into a corresponding problem consisting of a feasible initial part x and

the interpart restricted compositions of n− x with initial part at least σ(x).

The most basic property of the set of interpart restricted compositions is

that it is nonempty — irrespective of the value of n or the restriction function

σ, there is always at least one composition in the set. This composition is the

singleton composition 〈n〉. We formally prove the existence of the singleton

composition in the following lemma.

Lemma 3.1. For all n ∈ Z+ and σ : Z+ → Z+, 〈n〉 ∈ Cσ(n).

Proof. Let n ∈ Z+ and σ : Z+ → Z+ be arbitrary, and let a1 . . . ak = 〈n〉.
Using the three necessary and sufficient conditions for membership of the set

Cσ(n), we now demonstrate that a1 . . . ak ∈ Cσ(n):

1. aj ∈ Z+ for 1 ≤ j ≤ k;

2. a1 + · · ·+ ak = n;

3. σ(aj) ≤ aj+1 for 1 ≤ j < k.

Properties (1) and (2) follow immediately as k = 1 and n is a positive integer.

Property (3) is vacuously true as k = 1.

Lemma 3.1 shows that n is always a feasible initial part for any function

σ : Z+ → Z+, and so there is always at least one composition in the set

Cσ(n). We also require a means of determining whether a positive integer

x < n is a feasible initial part. The following lemmas show that x+σ(x) ≤ n

is a necessary and sufficient condition for x < n to be a feasible initial part

for n and σ.

49

§ 3.1. An Algorithmic Framework

Lemma 3.2. For all positive integers x and n such that x < n and all

functions σ : Z+ → Z+,

∃a1 . . . ak(a1 . . . ak ∈ Cσ(n) ∧ a1 = x) =⇒ x+ σ(x) ≤ n.

Proof. Let x < n be arbitrary positive integers and σ : Z+ → Z+ be an

arbitrary function. Suppose ∃a1 . . . ak(a1 . . . ak ∈ Cσ(n) ∧ a1 = x). As x < n

and all parts of a1 . . . ak must be positive integers, we conclude that k ≥ 2.

Then as a1 = x and a1 + · · · + ak = n, we get a2 = n − x − (a3 + · · · +
ak). Furthermore, as σ(aj) ≤ aj+1 for 1 ≤ j < k, we see that σ(x) ≤ a2.

Combining this information, we get σ(x) ≤ n−x−(a3+· · ·+ak), or x+σ(x) ≤
n − (a3 + · · · + ak). Thus, we see that x + σ(x) ≤ n − (a3 + · · · + ak) ≤ n,

and x+ σ(x) ≤ n, as required.

Lemma 3.3. For all positive integers x and n and all functions σ : Z+ → Z+,

x+ σ(x) ≤ n =⇒ ∃a1 . . . ak(a1 . . . ak ∈ Cσ(n) ∧ a1 = x).

Proof. Let n and x be arbitrary positive integers and σ : Z+ → Z+ be an

arbitrary function. Suppose x + σ(x) ≤ n, or σ(x) ≤ n − x. Then, as the

codomain of σ is Z+, we know that 1 ≤ σ(x), and so 1 ≤ σ(x) ≤ n − x.

Thus, x < n. Suppose that b1b2 = (x)(n − x). By the preceding argument

n−x ≥ 1 and x is a positive integer. Clearly, x+n−x = n, and furthermore,

as σ(x) ≤ n− x, b1b2 fulfils the three necessary and sufficient conditions for

membership of the set Cσ(n).

In Lemma 3.2 we showed that if there exists some a1 . . . ak ∈ Cσ(n) where

the initial part is x, and x < n, then the condition x + σ(x) ≤ n must hold

true. Then, in Lemma 3.3 we showed that if x + σ(x) ≤ n then there must

exist some a1 . . . ak in the set Cσ(n) such that the initial part is equal to x.

Note that in Lemma 3.3 the requirement that x < n is directly implied by

the premise (x + σ(x) ≤ n). In Lemma 3.2, on the other hand, we must

assert that x < n if the premise (there exists some a1 . . . ak in Cσ(n) where

a1 = x) is to imply that x + σ(x) ≤ n. This slight asymmetry is caused by

50

§ 3.1. An Algorithmic Framework

the singleton composition, and we shall now develop necessary and sufficient

conditions for a positive integer x to be a feasible initial part for n and σ.

Theorem 3.1 (Feasible Initial Parts). If n and x are positive integers and

σ : Z+ → Z+ is a function, then

∃a1 . . . ak(a1 . . . ak ∈ Cσ(n) ∧ a1 = x) ⇐⇒ x+ σ(x) ≤ n ∨ x = n. (3.2)

Proof. By Lemmas 3.2 and 3.3 the biconditional

∃a1 . . . ak(a1 . . . ak ∈ Cσ(n) ∧ a1 = x) ⇐⇒ x+ σ(x) ≤ n (3.3)

holds for all positive integers x < n. By Lemma 3.1 we know that n is always

a feasible initial part, but if x = n, then x + σ(x) > n, as the codomain of

σ is the positive integers. Thus, combining this with (3.3) we get (3.2), as

required.

Thus, by Theorem 3.1 we know that for any sequence a1 . . . ak in the

set Cσ(n) the initial part a1 either obeys the condition a1 + σ(a1) ≤ n or

a1 = n. Stated another way, if we are given a value x such that x 6= n and

x+σ(x) > n then we know that there cannot be any compositions in the set

Cσ(n) such that the initial part is equal to x.

Theorem 3.1 provides us with an efficient means of determining what

values may be initial parts for a given value of n and σ. For our enumer-

ation and generation techniques we require one further fundamental result:

although we now know how to determine whether a given value is a feasible

initial part, we still do not know how to proceed with solving the rest of

the problem. The following theorem shows that if we are given an interpart

restricted composition a1 . . . ak of n and σ, then the sequence a2 . . . ak is an

interpart restricted compositions of (n− a1) and σ, where the initial part is

at least σ(a1).

Theorem 3.2 (Fundamental Bijection). Let x and n be positive integers and

51

§ 3.1. An Algorithmic Framework

σ : Z+ → Z+ be some function. Then, if x+ σ(x) ≤ n,

{x · a1 . . . ak | a1 . . . ak ∈ Cσ(n− x, σ(x))}

= {b1 . . . bl | b1 . . . bl ∈ Cσ(n) ∧ b1 = x}.

Proof. Suppose x and n are positive integers and σ : Z+ → Z+ is an arbitrary

function. Suppose x + σ(x) ≤ n, and let A = {x · a1 . . . ak | a1 . . . ak ∈
Cσ(n − x, σ(x))} and B = {b1 . . . bl | b1 . . . bl ∈ Cσ(n) ∧ b1 = x}. We now

demonstrate that A ⊆ B and B ⊆ A.

Let a1 . . . ak be an arbitrary element of A. Since a2 . . . ak ∈ Cσ(n−x, σ(x)),

we know that a2 + · · · + ak = n − x and σ(aj) ≤ aj+1 for 2 ≤ j < k. Then,

as a1 = x and σ(x) ≤ a2, we known that a1 + · · ·+ ak = n and σ(aj) ≤ aj+1

for 1 ≤ j < k, and hence a1 . . . ak ∈ Cσ(n). Furthermore, as a1 = x, we

know that a1 . . . ak ∈ B, and thus, as a1 . . . ak is and arbitrary element of A,

A ⊆ B.

Let b1 . . . bl be an arbitrary element of B. Since b1 . . . bl ∈ Cσ(n) and

b1 = x, we know that b2 + · · · + bl = n − x, σ(bj) ≤ bj+1 for 2 ≤ j < l

and σ(x) ≤ b2. Thus, b2 . . . bl ∈ Cσ(n− x, σ(x)) and furthermore, as b1 = x,

b1 . . . bl ∈ A. Therefore, as b1 . . . bl is an arbitrary element of B, B ⊆ A.

Thus, as A ⊆ B and B ⊆ A, A = B, as required.

Theorem 3.2 is essential as it shows that there is a bijection between the

sets of interpart restricted compositions of n − x where the initial part is

at least σ(x) and the set of interpart restricted compositions of n where the

initial part is exactly x. Thus, when we have a value x that we know is a

feasible initial part (from Theorem 3.1) we can assign this value and operate

recursively on the set Cσ(n− x, σ(x)).

The results of this section show that we can determine whether a given

value is a feasible initial part in constant time, and indicate how we may

proceed with solving the remainder of our problems. Therefore, when given

a value x we do not have to attempt to build a composition matching the

required criteria, only to find after some unspecified time that the composi-

tion we have been constructing does not meet our requirements. Computing

52

§ 3.1. An Algorithmic Framework

the feasibility of a given value allows us make a backtrack-free guarantee: we

can always ascertain in constant time whether a given value can be extended

to a complete composition.

3.1.3 Examples

In this subsection we illustrate some of the possible instantiations of interpart

restricted compositions by examining some classes of restricted partition from

the literature, and how they may be represented by different functions. This

is not an exhaustive list of all possible instantiations of the framework and is

perhaps not even a representative subset of the different types of restriction

that may be imposed. In the interest of keeping the examples relevant to

previous work in the area we have restricted the examples chosen to classes

of restricted partition and composition that have been previously studied in

the literature.

Unrestricted Compositions

An unrestricted composition of n is the simplest instance of an interpart

restricted composition. Using the function σ(x) = 1, the set of interpart

restricted compositions of n will contain the unrestricted compositions of n.

If we substitute this function into (3.1), we obtain

1 ≤ a2, 1 ≤ a3, . . . , 1 ≤ ak

which makes the relationship plain: no restriction other than the requirement

that all parts must be positive integers is stipulated. Computing the feasibil-

ity of initial parts for the unrestricted compositions is trivial — substituting

σ(x) = 1 into the conditions of Theorem 3.1, we see that a positive integer x

is a feasible initial part if x+1 ≤ n or x = n. Therefore, all values 1 ≤ x ≤ n

are feasible initial parts, and this corresponds to our condition 1 ≤ a2 above.

53

§ 3.1. An Algorithmic Framework

Unrestricted Partitions

An unrestricted partition of n is an unordered collection of positive integers

whose sum is n. As we shall explore in detail in Chapter 5, partitions encoded

as ascending compositions can be generated more efficiently that partitions

encoded as descending compositions. We shall therefore use ascending com-

positions to encode partitions in preference to the standard convention of

encoding partitions as descending compositions [And76, p.xiii], and defer our

justification of this practice to Chapter 5. Thus, the unrestricted partitions

of 5 are represented by the ascending compositions

1 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 2 = 1 + 1 + 3 = 1 + 2 + 2 = 1 + 4 = 2 + 3 = 5.

We can, therefore, represent the partitions of n by instantiating the inter-

part restriction framework to ensure that the compositions specified are ar-

ranged in ascending order. We can achieve this using the interpart restriction

function σ(x) = x, which, when substituted into (3.1) gives the system of

inequalities

a1 ≤ a2, a2 ≤ a3, · · · , ak−1 ≤ ak

which clearly specify that parts are arranged in ascending order. Evaluating

our conditions for initial part feasibility in this instance (Theorem 3.1), we

see that a positive integer x is a feasible initial part if 2x ≤ n or x = n. We

can see this in the example of the partitions of 5 above, where 1, 2 and 5

are the only initial parts: 2× 3 6≤ 5 and 2× 4 6≤ 5, so 3 and 4 are infeasible

initial parts.

Partitions into Distinct Parts

One of the first results in the theory of partitions demonstrates that the num-

ber of partitions of n where all parts are different (or partitions into distinct

parts) is equal to the number of partitions of n where all parts are odd [BS05,

§2]. Partitions into distinct parts can also be seen as sets of positive integers

whose sum is n, and are a fundamental combinatorial quantity. Similarly to

the one-to-one correspondence between the unrestricted partitions of n and

54

§ 3.1. An Algorithmic Framework

the ascending compositions of n, there is also a one-to-one correspondence

between the distinct partitions of n and the compositions of n whose parts

are in strictly increasing order. Thus, the partitions into distinct parts of 8

are represented by the compositions

1 + 2 + 5 = 1 + 3 + 4 = 1 + 7 = 2 + 6 = 3 + 5 = 8.

The rule that parts must be arranged in strictly increasing order can easily

be seen as requiring that any composition a1 . . . ak must have aj < aj+1

for 1 ≤ j < k. This system of inequalities can be represented using the

restriction function σ(x) = x + 1, because when we substitute into (3.1) we

get the inequalities

a1 + 1 ≤ a2, a2 + 1 ≤ a3, . . . , ak−1 + 1 ≤ ak

which clearly require that all parts be distinct.

Using the function σ(x) = x+1 in our conditions for initial part feasibility

in Theorem 3.1, we see that a positive integer x is a feasible initial part for n

and σ(x) = x+1, if 2x+1 ≤ n or x = n. Thus, we can see from the example

above that 4 is not a feasible initial part for the distinct partitions of 8.

Rogers-Ramanujan Partitions

The first Rogers-Ramanujan identity [BS05, §2] states that the number of

partitions of n where the difference between parts is at least 2 is equal to

the number of partitions of n where all parts are ≡ ±1 (mod 5) — that is,

all parts leave a remainder of either 1 or 4 when divided by 5. The second

Rogers-Ramanujan identity [BS05, §2] demonstrates that the number of par-

titions of n where the difference between parts is at least 2, and all parts are

at least 2, is equal to the number of partitions of n where all parts are ≡ ±2

(mod 5). The Rogers-Ramanujan identities have many applications in math-

ematics [Ful00] and in physics [AB89] where, as Andrews [And05] explains,

“in simple terms, the Rogers-Ramanujan identities are crucial in studying the

behaviour of helium on a graphite plate.” These identities are of central im-

55

§ 3.1. An Algorithmic Framework

portance in almost all treatments of integer partitions (see Andrews [And76,

ch.7], Andrews & Eriksson [AE04, ch.4], Hardy & Wright [HW54, §19.13],

Wilf [Wil02, p.11] and others) and represent an extensive field of study in

their own right. (See Fulman [Ful00] and Berkovich & McCoy [BM98] for

further references and Hardy [Har40] or Andrews [And05] for an account of

the history of these identities.)

The Rogers-Ramanujan identities are an important part of the theory of

partitions, and are concerned with partitions where the difference between

parts is at least 2, which we shall call ‘Rogers-Ramanujan’ partitions for

convenience. Once again, there is a one-to-one correspondence between the

Rogers-Ramanujan partitions and a class of ascending composition. In this

case the requirement that the difference between parts be at least 2 can be

translated into the requirement that the difference between adjacent parts

be at least 2, as parts must be arranged in ascending order. Therefore, the

Rogers-Ramanujan partitions of 12 are represented by the compositions

1+3+8 = 1+4+7 = 1+11 = 2+4+6 = 2+10 = 3+9 = 4+8 = 5+7 = 12,

and, in general, a composition a1 . . . ak of n represents a Rogers-Ramanujan

partition of n if aj + 2 ≤ aj+1 for 1 ≤ j < k. The interpart restriction

function σ(x) = x+ 2 encapsulates these conditions.

Solving the initial part feasibility conditions of Theorem 3.1 is quite simple

when we are dealing with Rogers-Ramanujan partitions. Substituting σ(x) =

x+ 2 into these conditions shows that a positive integer x is a feasible initial

part if 2x + 2 ≤ n or x = n. In the example above, we see that 6, . . . , 11

are all infeasible initial parts for 12 and σ(x) = x+ 2, which follows directly

from this condition.

Conditional Restrictions on Partitions

The first Göllnitz-Gordon identity [Ald69] states that the number of parti-

tions of n where the difference between parts is at least 2 and no contiguous

even values appear (thus, if 2j is a part, 2j + 2 is not [AE04, p.33]) is equal

to the number of partitions of n where all parts are ≡ ±1, 4 (mod 8). Fol-

56

§ 3.1. An Algorithmic Framework

lowing Alladi & Berkovich [AB05], we refer to partitions of the former class

as ‘Göllnitz-Gordon’ partitions. If we encode the Göllnitz-Gordon partitions

of 13 as ascending compositions we get

1+3+9 = 1+4+8 = 1+5+7 = 1+12 = 2+11 = 3+10 = 4+9 = 5+8 = 13.

A composition a1 . . . ak represents a Göllnitz-Gordon partition if aj + 2 +

[aj even] ≤ aj+1 for 1 ≤ j < k. This condition ensures that there is a

difference of at least 2 between consecutive parts, but also that the difference

is at least 3 if the part is even, ensuring that consecutive multiples of 2 do

not appear. Therefore, we can represent the Göllnitz-Gordon partitions using

the restriction function σ(x) = x+ 2 + [x even].

Substituting the restriction function σ(x) = x + 2 + [x even] into the

conditions of Theorem 3.1 we see that a positive integer x is a feasible initial

part for n and σ if 2x+2+[x even] ≤ n. Thus, we see, in the example of n =

13 above, that 5 is a feasible initial part because 2×5+2+[5 even] = 12 ≤ 13.

On the other hand, 6 is not a feasible initial part because 2×6+2+[6 even] =

15 6≤ 13.

A similar class of partition was studied by Schur [AG95]. In the partitions

of interest in Schur’s theorem, the difference between parts is at least 3 and

no contiguous multiples of 3 appear. We can represent such ‘Schur’ partitions

using the restriction function σ(x) = x+ 3 + [x ≡ 0 (mod 3)]. Göllnitz’s Big

Theorem [AB05] is concerned with partitions where the difference between

parts is at least 6, or 7 if the part is ≡ 0, 1 or 3 (mod 6); these partitions

are represented using the restriction function σ(x) = x + 6 + [x ≡ 0, 1, 3

(mod 6)].

Göllnitz-Gordon, Schur, and Göllnitz partitions are all examples of what

we refer to as ‘conditional’ restrictions — that is, the restriction function

contains a conditional additive factor. In the next chapter we develop gen-

eration algorithms for any class of partition or composition in which the

corresponding restriction function is nondecreasing. While the restriction

functions for the unrestricted compositions, unrestricted partitions, distinct

partitions and Rogers-Ramanujan partitions are clearly nondecreasing, it is

57

§ 3.1. An Algorithmic Framework

not immediately obvious that the conditional restriction functions we exam-

ine here are nondecreasing. We will therefore examine a generalisation of

these functions, and show that it must be nondecreasing.

Lemma 3.4. If f : Z+ → Z+ is an increasing function and s(x) is an

arbitrary logical statement in terms of a positive integer x, then the function

σ : Z+ → Z+ such that σ(x) = f(x) + [s(x)] is nondecreasing.

Proof. Suppose f : Z+ → Z+ is an increasing function and s(x) is an ar-

bitrary logical statement in terms of a positive integer x. Let σ(x) =

f(x) + [s(x)] and suppose y is an arbitrary positive integer. Consider the

following inequalities (which correspond to possibilities for s(y) and s(y+1))

f(y)+0 < f(y+1)+0, f(y)+0 < f(y+1)+1, f(y)+1 < f(y+1)+1 (3.4)

each of which is an obvious consequence of f being an increasing function.

Only one possibility remains in the ‘truth-table’, that is, where [s(y)] = 1

and [s(y + 1)] = 0. Since f is an increasing function, f(y) < f(y + 1) and it

follows that

f(y) + 1 ≤ f(y + 1) + 0. (3.5)

We know from (3.4) and (3.5) that σ(y) ≤ σ(y+ 1) for an arbitrary integer y

and all possible values of s(y) and s(y+ 1), and σ is therefore nondecreasing.

Thus, by Lemma 3.4 we are assured that any conditional restriction func-

tion of the type given above can be correctly generated using the algorithms

of the next chapter. (The techniques of this chapter make no assumption

about the properties of the restriction function other than its type signature;

it is for the purposes of efficient generation that we require the nondecreasing

property.)

Multiplicative Restrictions

Bousquet-Mélou & Eriksson [BME97b] generalised Euler’s theorem (the num-

ber of partition into distinct parts = the number of partitions into odd

58

§ 3.1. An Algorithmic Framework

parts), by noting that the requirements of distinctness can “be perceived

as demanding that the quotient between consecutive parts be greater than

one” [BME97b, §1]. One of Bousquet-Mélou & Eriksson’s results asserts that

the number of partitions in which the quotient between parts is greater than

γ, where γ = (r+
√
r2 − 4)/2 for some integer r ≥ 2, is equal to the number

of partitions of n into parts from the set {e1, e2, . . . }, with e1 = 1, e2 = r+ 1

and ej = rej−1 − ej−2 for j > 2. For example, if we set r = 3 we obtain

the partitions of n where the quotient of consecutive parts is greater than

(3 +
√

5)/2; and when we express these as ascending compositions we get

1 + 3 + 12 = 1 + 4 + 11 = 1 + 15 = 2 + 14 = 3 + 13 = 4 + 12 = 16.

In general, we may require compositions a1 . . . ak such that γaj < aj+1 for

1 ≤ j < k, where γ is some real value ≥ 1. Representing such compositions

as interpart restricted compositions is quite simple, complicated only by the

fact that strict inequality is required and that the quotient is real valued. To

ensure that γaj < aj+1 for 1 ≤ j < k we use the restriction function

σ(x) = dγxe+ [dγe = γ]. (3.6)

It is straightforward to see that, if γ is not an integer, then we can enforce the

required inequality using σ(x) = γx. The Iversonian expression [dγe = γ]

is required when γ is an integer, as parts must be strictly greater than γ

times the previous. We can also see that (3.6) is a nondecreasing function

as the logical condition is in terms of the multiplicative factor γ and not of

the parameter x. Therefore, for an arbitrary positive integer y, we will have

σ(y) ≤ σ(y + 1).

In the example above we can see that the integers 1, . . . , 4 and 16 are

the feasible initial parts for n = 16 and σ(x) = dx(3 +
√

5)/2e. This can

be verified from Theorem 3.1 which shows that that a positive integer x is a

feasible initial part in this instance when x + dx(3 +
√

5)/2e ≤ n or x = n.

Thus, for example, 6 is not a feasible initial part because 6+d6×(3+
√

5)/2e =

22 6≤ 16.

59

§ 3.1. An Algorithmic Framework

A similar class of restricted partition was studied by Hickerson [Hic74],

who investigated partitions where the ratio between consecutive parts is at

least some positive integer r. More precisely, Hickerson studied the partitions

a1 . . . ak where raj ≤ aj+1 for 1 ≤ j < k; such partitions can be represented

using the restriction function σ(x) = rx.

Discussion

The examples of restricted partition we have just reviewed are chosen from

the literature to reflect both the type of restriction we can impose using in-

terpart restricted compositions and the classes of restricted partition that

have been previously studied. We have seen that we can impose a rich class

of restriction on partitions with our framework. The classes of partition we

have examined in this section are of combinatorial importance and a large lit-

erature exists on the mathematical aspects of these partitions. For example,

we considered the partitions into distinct parts and Rogers-Ramanujan par-

titions, both of which are an instance of the restriction function σ(x) = x+d.

Partitions with general difference conditions of this type are the subject of

an open conjecture under active investigation [Yee04]. We also saw more

general conditional restrictions and multiplicative restrictions, but these are

a small subset of the restrictions that can be imposed. Rather than propose

contrived examples, we have examined instances of the framework which have

been studied previously. We could, for example, specify partitions in which

each part is at least the cube of the previous part (σ(x) = x3), or where the

minimum relationship between parts is given by some polynomial — e.g.,

σ(x) = x2 + 2x + 3. Any function can be used to specify a class of inter-

part restricted composition and there is therefore a large number of classes

of restriction that can be imposed.

We can therefore imagine the set of all restriction functions arranged

on a ‘number-line’, arranged in increasing order of ‘restrictiveness’. In this

illustration we show the restriction functions and corresponding asymptotic

formulas for the unrestricted [AS81, p.825] and distinct [AS81, p.825–826]

60

§ 3.1. An Algorithmic Framework

partitions.

σ(x) =

Cσ(n) ∼

1 x x+ 1 n

2n−1 eπ
√

2n/3

4n
√

3
eπ
√
n/3

4n3/431/4 1

(This illustration is a purely figurative device, and no implications of scale

should be drawn.) On the left-hand extreme of the continuum we have the

unrestricted compositions of n, specified by the restriction function σ(x) = 1,

and of which there are 2n−1. On the other extreme we have the restriction

function σ(x) = n, and there is only one composition that satisfies the in-

terpart restriction criteria for this function. These are the bounds between

which all other restriction functions must be placed, as there cannot be any

functions either more or less restrictive than these functions. Between these

functions then lie all the restriction functions we have considered in this

section.

We have concentrated on classes of restricted partition, but we may also

represent classes of restricted composition. The restrictions we can impose

on compositions, however, are relatively limited. It is much more difficult to

impose restrictions on the values of compositions because we cannot enforce

a global ordering over the parts, and so we only retain information about

adjacent parts. Thus, while it is easy to enforce distinctness on partitions,

we cannot define compositions with distinct parts within the framework we

have defined.

We can, however, impose a lower-bound on the value of each individual

part in compositions [And76, p.63]. If we let d be the minimum value allowed

in compositions, then each composition a1 . . . ak must have d ≤ aj for 1 ≤
j ≤ k. We can represent such compositions using the restriction function

σ(x) = d. Substituting this function into (3.1) we get the inequalities

d ≤ a2, d ≤ a3, . . . , d ≤ ak

We can see that d ≤ a2, but no restriction is made on the initial part —

61

§ 3.2. Enumeration

therefore, if we wish to obtain only the compositions where all parts are at

least d, then we must also restrict the minimum value of the initial part to

be d. Fortunately, it is trivial for us to enforce a minimum value on the

initial part of the compositions we require, as this is the means by which

all of our algorithms decompose the problem of enumerating or generating

interpart restricted compositions. Thus, if we define the restriction function

as σ(x) = 2, the set Cσ(6, 2) is given by

2 + 2 + 2 = 2 + 4 = 3 + 3 = 4 + 2 = 6

which are all the compositions of 6 where all parts are at least 2. (These may

alternatively be referred to as compositions with no occurrence of 1, the prop-

erties of which have been studied by Cayley [Cay76] and Grimaldi [Gri01].)

3.2 Enumeration

Enumeration, or “counting the number of elements of a finite set” [Sta86,

p.1], is fundamental to the study of combinatorics. Many techniques exist to

enumerate classes of partition and composition, the most common being re-

currence relations, generating functions and direct formulas. Exact formulas

are not known for all of the examples we considered in the previous section,

and some of those that are known are extremely complex: see, for instance,

the Hardy-Ramanujan-Radamacher formula for the unrestricted partitions

of n [And76, ch.5]. Generating functions [Wil90] are known for all of the

classes of restricted partition we have used to exemplify interpart restricted

compositions and are a fundamental tool in the study of enumerative com-

binatorics [Sta86]. Our topic of study in this dissertation is not enumeration

per se, and so we shall not investigate the possibility of a generalised generat-

ing function to enumerate interpart restricted compositions. For the purposes

of this dissertation a general recurrence equation to enumerate interpart re-

stricted compositions is sufficient, and is, at any rate, a useful starting point

for a more in-depth enumerative study of the framework.

62

§ 3.2. Enumeration

Thus, in Section 3.2.1 we develop a recurrence equation which enumerates

the interpart restricted compositions of n for any restriction function σ :

Z+ → Z+. In the interest of completeness, we also provide a simple dynamic

programming implementation of this recurrence, allowing us to enumerate

the interpart restricted compositions for all 1 ≤ j ≤ n in O(n2) time and

space. Then, in Section 3.2.2 we demonstrate a simple application of this

algorithm in computing integer sequences from the Online Encyclopedia of

Integer Sequences [Slo05], and provide formulas to compute some sequences

of interest from the literature.

3.2.1 A General Recurrence Equation

In this section we develop two recurrence equations to enumerate interpart

restricted compositions. These recurrences are equivalent but presented in al-

ternative forms, suitable for applications to generation (as we shall see in the

next chapter) and enumeration (which we use to implement a dynamic pro-

gramming enumeration algorithm in this section). Recurrence relations are

crucial for the development and analysis of recursive generation algorithms

for combinatorial objects [Rus01, §4.11]. Recurrence relations to enumerate

classes of restricted partition have also been used to develop efficient parallel

enumeration algorithms [SS96] and in applications to percolation theory and

nuclear physics [Dés02].

The first recurrence we shall consider operates by summing Cσ(n−x, σ(x))

over all feasible initial parts x for n and σ. By Theorem 3.2 we know that

Cσ(n−x, σ(x)) is equal to the number of compositions of n interpart restricted

by σ where the initial part is exactly x, and so the summation outlined above

will correctly compute Cσ(n,m). We shall now prove the validity of this

approach. For the purposes of the following theorem it is useful to define the

function C∗σ(n,m) as the number of elements of Cσ(n) where the initial part

is exactly m; thus, C∗σ(n,m) = |{a1 . . . ak | a1 . . . ak ∈ Cσ(n) ∧ a1 = m}|.

63

§ 3.2. Enumeration

Theorem 3.3. For all positive integers m ≤ n and all functions σ : Z+ →
Z+, Cσ(n,m) satisfies the recurrence

Cσ(n,m) = 1 +
∑
x≥m

x+σ(x)≤n

Cσ(n− x, σ(x)). (3.7)

Proof. Let m ≤ n be arbitrary positive integers and σ : Z+ → Z+ be an

arbitrary function. By Theorem 3.1, a positive integer x is a feasible initial

part for n and σ if x+σ(x) ≤ n or x = n. Clearly, we can compute Cσ(n,m)

by summing C∗σ(n, x) over all feasible initial parts that are ≥ m, and therefore

we have

Cσ(n,m) = C∗σ(n, n) +
∑
x≥m

x+σ(x)≤n

C∗σ(n, x).

By Theorem 3.2 we know that C∗σ(n, x) = Cσ(n − x, σ(x)), and clearly

C∗σ(n, n) = 1, giving us the required result.

Recurrence (3.7) is an example of what Ruskey refers to as positive re-

currences [Rus01, §1.2]: it is stated in a form that involves no division or

subtraction and involves only positive values. This recurrence will prove

useful in the next chapter when we examine the problem of recursively gen-

erating all interpart restricted compositions; as the recurrence is positive, we

can expect that this algorithm will be efficient [Rus01, §1.2].

For the purposes of enumeration, however, it is useful to have a recurrence

that does not require a summation over an indeterminate number of values.

In particular, to develop an efficient dynamic programming [CLR90, ch.16]

enumeration algorithm, we require a recurrence which involves a constant

number of terms. We can reduce the number of recursive terms involved

in computing Cσ(n,m) by noting that if we extract the first term from the

summation in (3.7) then the remaining terms are equivalent to Cσ(n,m+ 1).

This observation then reduces the number of terms in the equation to two

and requires the introduction of a base case, making the resulting recurrence

ideal for dynamic programming.

64

§ 3.2. Enumeration

Theorem 3.4. For all positive integers m ≤ n and all functions σ : Z+ →
Z+, Cσ(n,m) satisfies the recurrence

Cσ(n,m) = Cσ(n−m,σ(m)) + Cσ(n,m+ 1), (3.8)

with the initial conditions Cσ(n, n) = 1 and Cσ(n,m) = 0 when m > n.

Proof. We begin by examining the initial conditions. Suppose m > n. Then,

as the codomain of σ is Z+, m+ σ(m) > n, so m is not a feasible initial part

by Theorem 3.1. Suppose, alternatively, that m = n. Then, by Theorem 3.3

above Cσ(n,m) = 1.

More generally, suppose that 1 ≤ m < n. From (3.7) we have

Cσ(n,m) = 1 +
∑
x≥m

x+σ(x)≤n

Cσ(n− x, σ(x))

= Cσ(n−m,σ(m)) + 1 +
∑

x≥m+1
x+σ(x)≤n

Cσ(n− x, σ(x))

= Cσ(n−m,σ(m)) + Cσ(n,m+ 1)

Therefore, since we have verified each of the base cases and the general case,

the recurrence is valid.

Informally we can see that the general case of recurrence (3.8) works

because the first term counts all of the compositions in which the first part

is equal to m and we therefore have n − m left to assign, and the first

part of the compositions of n − m must be at least σ(m) to maintain the

inequalities required for the interpart restrictions. The second term then

counts the compositions in which the initial part is greater than m, giving

us the total number of compositions in question. This idea is illustrated in

Figure 3.1, where we examine the evaluation of Cσ(11, 1) when σ(x) = x+ 2.

On the left-hand side of this illustration we see the set of Rogers-Ramanujan

partitions of 11 where the initial part is exactly 1; and these are enumerated

by Cσ(11 − 1, σ(1)) = Cσ(10, 3). On the right-hand side of Figure 3.1 we

then see the Rogers-Ramanujan partitions of 11 where the initial part is at

65

§ 3.2. Enumeration

1

1

1

10

4

3

6

7

Cσ(10, 3)

?

6

Cσ(n−m,σ(m))

11

4

3

2

7

8

9

Cσ(11, 2)

?

6

Cσ(n,m+ 1)

Figure 3.1: Illustration of recurrence to count interpart restricted composi-
tions for σ(x) = x+2. We can construct the Rogers-Ramanujan partitions of
11 by prefixing 1 to all Rogers-Ramanujan partitions of 10 with initial part
at least 3. The remaining partitions, where the initial part is at least 2, are
found recursively.

least 2, and these are enumerated recursively by the same method.

It is useful to have an algorithm to compute Cσ(n,m) efficiently for an

arbitrary instance of the restriction function. A simple recursive implementa-

tion of (3.8) is inefficient, but using dynamic programming it can be used to

good effect. By storing a lower-triangular matrix of values for the Cσ(n,m)

function we avoid recursively recomputing the values Cσ(n −m,σ(m)) and

Cσ(n,m+ 1). If we compute each row of the matrix from right-to-left we en-

sure that the value of Cσ(n,m+ 1) is available; and if we begin at n = 1 and

calculate each row completely before moving on to the next, we know that

Cσ(n −m,σ(m)) must also be at hand. Algorithm 3.1 is a straightforward

application of this technique. The operation of the algorithm is similar to

partition enumeration algorithms [McK65a, Whi70a, BS73] from the litera-

ture, and has similar time and space complexity: we require O(n2) time and

space to fully compute the tabulation of Cσ(j,m) for all values of j ≤ n.

3.2.2 Integer Sequences

Integer sequences relating to partitions and compositions have been studied

extensively, and the Online Encyclopedia of Integer Sequences [Slo05] con-

tains many entries relating to these combinatorial objects. For example, if

66

§ 3.2. Enumeration

Algorithm 3.1 Tabulateσ(N)

Require: N > 0 and σ : Z+ → Z+

for n← 1 up to N do
cn,n ← 1
for m← n− 1 down to 1 do

if m+ σ(m) ≤ n then
cn,m ← cn−m,σ(m) + cn,m+1

else
cn,m ← cn,m+1

end if
end for

end for

we set σ(x) = x+ 2 and m = 2, we compute the sequence

0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 6, 6, 8, 9, 11, 12, 15, 16, 20

when we evaluate Cσ(n,m) for 1 ≤ n ≤ 20, and this is sequence A003106

in Sloane’s encyclopedia. We know that this sequence counts the number of

partitions with minimum interpart distance of 2 where the initial part is at

least 2, but the second Rogers-Ramanujan identity (see Section 3.1.3) tells us

that this sequence also counts the partitions of n into parts ≡ ±2 (mod 5).

If enumeration of a particular class of composition is all that we require then

we can use the framework on many more classes of partition and composition

using the numerous partition identities [Ald69, Pak05]. An overview of these

identities and the types of congruence condition we can enumerate is given

in Table 3.1.

We can also compute sequences which are not directly enumerable, but

can be obtained more tangentially. Alladi [All99] studied the “number par-

titions of n into parts 6= 2 and differing by ≥ 6, where the inequality is

strict whenever a part is even”, which he proves to be equal to the num-

ber of partitions into distinct odd parts. We can enumerate such partitions

using our recurrence with minimal difficulty, using the restriction function

σ(x) = x+6+[x even]. As 2 is excluded, however, we cannot simply evaluate

Cσ(n, 1) for n = 1, 2 This difficulty is easily circumvented by noting that

67

R
es

tr
ic

ti
on

F
u

n
ct

io
n

F
or

m
u

la
C

on
gr

u
en

ce
S

eq
u

en
ce

P
ro

of

x
+

1
C
σ
(n

)
≡

1
(m

o
d

2)
A

00
00

09
[A

n
d
76

,
p
.5

]

x
+

2
C
σ
(n

)
≡
±

1
(m

o
d

5)
A

00
31

14
[A

n
d
76

,
ch

.7
]

C
σ
(n
,2

)
≡
±

2
(m

o
d

5)
A

00
31

06
[A

n
d
76

,
ch

.7
]

x
+

[x
ev

en
]

C
σ
(n

)
6≡

0
(m

o
d

4)
A

00
19

35
[H

on
85

,
p
.6

8]

x
+

[x
o
d
d
]

C
σ
(n

)
6≡

2
(m

o
d

4)
A

00
69

50

x
+

2
+

[x
ev

en
]

C
σ
(n

)
≡
±

1,
4

(m
o
d

8)
A

03
60

16
[A

B
05

]
C
σ
(n
,3

)
≡
±

3,
4

(m
o
d

8)
A

03
60

15
[A

B
05

]

x
+

2
+

[x
o
d
d
]

C
σ
(n

)
♦
6≡

3
(m

o
d

4)
[A

B
05

]
C
σ
(n
,2

)
♦
6≡

1
(m

o
d

4)
[A

B
05

]

x
+

3
+

[x
≡

0
(m

o
d

3)
]

C
σ
(n

)
≡
±

1
(m

o
d

6)
A

00
31

05
[A

E
04

,
p
.3

6]
C
σ
(n

)
♦
≡
±

1
(m

o
d

3)
A

00
31

05
[A

G
95

]

x
+

6
+

[x
ev

en
]

C
σ
(n
,2

)
−
C
σ
(n
,1

)
+
C
σ
(n
,3

)
♦
≡

1
(m

o
d

2)
A

00
07

00
[A

ll
99

]

x
+

6
+

[x
≡

0,
1,

3
(m

o
d

6)
]
C
σ
(n
,3

)
−
C
σ
(n
,2

)
+
C
σ
(n
,4

)
♦
≡

2,
4,

5
(m

o
d

6)
A

05
69

70
[A

ll
99

]

T
ab

le
3.

1:
T

ab
le

of
re

st
ri

ct
io

n
fu

n
ct

io
n
s

an
d

p
ar

ti
ti

on
s

w
it

h
p
ar

ts
sa

ti
sf

y
in

g
ce

rt
ai

n
co

n
gr

u
en

ce
co

n
d
it

io
n
s

w
h
ic

h
ar

e
en

u
m

er
ab

le
v
ia

a
p
ar

ti
ti

on
id

en
ti

ty
.

T
h
e

re
st

ri
ct

io
n

fu
n
ct

io
n

re
q
u
ir

ed
to

en
u
m

er
at

e
th

e
cl

as
s

of
p
ar

ti
ti

on
sp

ec
ifi

ed
is

p
ro

v
id

ed
al

on
g

w
it

h
th

e
co

rr
es

p
on

d
in

g
fo

rm
u
la

in
te

rm
s

of
C
σ
(n
,m

).
T

h
e

cl
as

s
of

p
ar

ti
ti

on
s

sp
ec

ifi
ed

b
y

th
e

co
n
gr

u
en

ce
co

n
d
it

io
n

ar
e

of
th

e
fo

rm
“a

ll
p
ar

ti
ti

on
s

of
n

w
it

h
al

lp
ar

ts
sa

ti
sf

y
in

g
α

”
w

h
er

e
α

is
th

e
sp

ec
ifi

ed
co

n
gr

u
en

ce
co

n
d
it

io
n
.

C
on

d
it

io
n
s

m
ar

ke
d

w
it

h
♦

ar
e

p
ar

ti
ti

on
s

w
it

h
d
is

ti
n
ct

p
ar

ts
on

ly
.

F
or

ea
ch

cl
as

s
th

e
ap

p
ro

p
ri

at
e

se
q
u
en

ce
fr

om
th

e
on

li
n
e

en
cy

cl
op

ed
ia

of
in

te
ge

r
se

q
u
en

ce
s

[S
lo

05
]

is
p
ro

v
id

ed
,

as
is

a
re

fe
re

n
ce

to
th

e
li
te

ra
tu

re
w

h
er

e
th

e
id

en
ti

ty
in

q
u
es

ti
on

is
p
ro

ve
d
.

68

§ 3.3. Summary

if the part 2 is to occur, it must be the initial part, as all subsequent parts

must differ from the initial by at least 6. Thus, we can compute the number

of such partitions by setting the restriction function to the aforementioned

value and evaluating Cσ(n, 2)−Cσ(n, 1)+Cσ(n, 3) for n = 1, 2 Göllnitz’s

Big Theorem [All99, §3] is of a similar form, and requires that the partitions

involved do not include the value 3, which we can again safely remove by

reasoning about the initial part.

3.3 Summary

In this chapter we have introduced the concept of interpart restricted compo-

sitions, an economically expressive means of specifying classes of restricted

partition and composition. We have seen that many classes of restricted par-

tition studied in the literature can be expressed within this framework using

a simple integer function. The function used to describe the restrictions,

known as the restriction function, can then be used as a parameter to general-

purpose computational routines. The first application of this framework was

also developed in this chapter, where we demonstrate that a general recur-

rence equation can be used to enumerate restricted partitions, by specifying

only the restriction function in question. We also saw how this recurrence

can be used to efficiently compute integer sequences from the Online En-

cyclopedia of Integer Sequences [Slo05], via a simple dynamic programming

algorithm. In the next chapter we shall consider, in depth, the problem of

generating interpart restricted compositions.

69

Chapter 4

Generating Interpart

Restricted Compositions

This chapter is concerned with defining efficient algorithms to generate inter-

part restricted compositions. In Section 4.1 we deal with some preliminary

issues such as the basic definitions we shall require for the purposes of dis-

cussing generation algorithms, and discuss the specific subset of the interpart

restricted compositions for which we shall develop generation algorithms.

Then, in Section 4.2 we begin our development of generation algorithms for

interpart restricted compositions with a simple recursive method. We then

move on to develop an abstract succession rule for interpart restricted com-

positions in Section 4.3, and provide a concrete implementation of this rule

as a generation algorithm, pausing briefly to compare this algorithm with

some existing algorithms from the literature. In Section 4.4 we develop a

coherent means of improving the efficiency of this algorithm for all instances

of the restriction function by introducing the theory of ‘terminal’ and ‘non-

terminal’ compositions. We implement the resulting algorithm, and compare

it with the direct implementation of the succession rule to determine what,

if any, improvements we can expect. Finally, in Section 4.5 we summarise

the results of this chapter.

70

§ 4.1. Preliminaries

4.1 Preliminaries

In Section 4.1.1 we define the basic concepts we require for discussing gener-

ation algorithms. Then, in Section 4.1.2 we discuss our fundamental require-

ment of the restriction functions we shall be considering in this chapter.

4.1.1 Definitions and Notation

In this subsection we are concerned with the basic properties required in any

generation algorithm, the ideas of ordering and succession. We shall therefore

formally define lexicographic order, and also define the notation we shall be

using throughout this chapter.

Definition 4.1 (Lexicographic Order). Let a = a1 . . . ak and b = b1 . . . bl,

where a, b ∈ Cσ(n) for some n ≥ 1, be arbitrary. We say that a precedes

b lexicographically, or a ≺ b, if there exists some t < min(k, l) such that

aj = bj for 1 ≤ j < t and at < bt.

Definition 4.1 defines the relation ≺ over interpart restricted composi-

tions, and is adapted from Williamson’s definition of lexicographic order over

functions [Wil85, p.14]. An equivalent definition, which will be useful in cer-

tain contexts, can be made recursively (also adapted from Williamson [Wil85,

p.15]). In this case we let a1 . . . ak and b1 . . . bl ∈ Cσ(n) for some n ≥ 1. We

then say that a1 . . . ak ≺ b1 . . . bl if a1 < b1 or a2 . . . ak ≺ b2 . . . bl.

In defining lexicographic succession rules, where we derive the next com-

position in the succession from the current, it is useful to have formal func-

tions that compute the lexicographically least element of a given set of com-

positions. We also define the function that computes the immediate lexico-

graphic successor of a given composition.

Definition 4.2 (Lexicographic Minimum). For some positive integers m ≤ n

and a function σ : Z+ → Z+, the function Mσ(n,m) computes the lexico-

graphically least element of the set Cσ(n,m).

Definition 4.3 (Lexicographic Successor). For any a1 . . . ak ∈ Cσ(n) \ {〈n〉}
the function Sσ(a1 . . . ak) computes the immediate lexicographic successor of

a1 . . . ak.

71

§ 4.1. Preliminaries

Definition 4.3 does not define the value of the function Sσ(a1 . . . ak) when

a1 . . . ak = 〈n〉. This is because the composition 〈n〉 is the lexicographically

largest composition and hence has no lexicographic successor.

Finally, in discussing and proving properties of generation algorithms, it

is useful to have a formal and concrete definition of the term ‘generate’.

Definition 4.4 (Generate). An algorithm generates the set Cσ(n) if it ex-

ecutes the statement visit a1 . . . ak exactly once for each a1 . . . ak ∈ Cσ(n),

and does not execute the statement visit a1 . . . ak for any a1 . . . ak 6∈ Cσ(n).

Having defined the basic concepts we shall require for this chapter, we

shall now attend to a pressing issue. The problem we turn to now is es-

sential in ensuring that the algorithms we define are as efficient as possible.

To do this, we require a simple property of the restriction function: for the

algorithms we define in this chapter the restriction function must be nonde-

creasing.

4.1.2 Nondecreasing Restriction Functions

In the previous chapter we developed necessary and sufficient conditions for

a positive integer to be a feasible initial part for any n ≥ 1 and σ : Z+ → Z+.

These conditions allowed us compute Cσ(j,m) for an all 1 ≤ m ≤ j ≤ n

and an arbritrary function σ : Z+ → Z+ in O(n2) time and space. For the

purposes of efficient generation, however, we require an extra property of

the restriction functions which we shall consider: any restriction function

σ : Z+ → Z+ must be nondecreasing. That is, for an arbitrary positive

integer x, the condition σ(x) ≤ σ(x + 1) must hold. To see why we must

impose this condition, consider the following example.

Suppose we let σ(x) = x+ 1 + 10[x = 3∨x = 4]; thus, if x is not equal to

3 or 4 we return x+ 1, but if x is one of these values, we return x+ 11. The

set of compositions of 13 interpart restricted by this function is given by

1 + 2 + 10 = 1 + 5 + 7 = 1 + 12 = 2 + 5 + 6 = 2 + 11 = 5 + 8 = 6 + 7 = 13.

The crux of the problem is shown in above the example: 1 and 2 are feasible

72

§ 4.1. Preliminaries

initial parts for 13 and σ(x) = x + 1 + 10[x = 3 ∨ x = 4], as are 5 and

6. But 3 and 4 are not. From the perspective of generation, where we

must systematically generate all possibilities, this property of possible non-

contiguity of feasible initial parts leads to inefficient algorithms in general. In

this example, because of the non-contiguity, we are forced to iterate through

all values x between 1 and n − 1 to test if they are feasible initial parts:

and the uncertainty introduced by this behaviour propagates throughout the

algorithm.

To avoid this unacceptable uncertainty and inefficiency in generation algo-

rithms, we introduce a requirement on the restriction functions that we shall

consider. All of the algorithms in this chapter are defined only for nonde-

creasing restriction functions. As we shall see momentarily, the requirement

of the nondecreasing property ensures that all feasible initial parts are con-

tiguous, thereby obviating the need to iterate over all values between 1 and

n− 1. If the restriction function is nondecreasing, once we have encountered

a value x such that x is not a feasible initial part for n and σ, we know that

there can be no value y such that x ≤ y < n and y is a feasible initial part.

We can therefore immediately skip to the singleton composition 〈n〉, safe in

the knowledge that we have not discarded any compositions that match our

requirements. We formally prove this result in the following theorem.

Theorem 4.1 (Contiguity of Feasible Initial Parts). For all positive integers

x and n and all nondecreasing functions σ : Z+ → Z+, if x+ σ(x) > n then

for all y > x, y + σ(y) > n.

Proof. Suppose x and n are arbitrary positive integers and σ : Z+ → Z+ is

an arbitrary nondecreasing function. Suppose that x + σ(x) > n, and let

y > x be arbitrary. Since σ is nondecreasing, σ(y) ≥ σ(x), and adding y to

both sides of this inequality we see that y+σ(y) ≥ y+σ(x). Then, as y > x,

y + σ(x) > x + σ(x), and so y + σ(y) > x + σ(x). Hence, y + σ(y) > n, as

required.

Corollary 4.1. For all positive integers m ≤ n and all nondecreasing func-

tions σ : Z+ → Z+, if m+ σ(m) > n then Cσ(n,m) = {〈n〉}.

73

§ 4.1. Preliminaries

Proof. Suppose m ≤ n are arbitrary positive integers and σ : Z+ → Z+

is an arbitrary nondecreasing function. Suppose that m + σ(m) > n. By

Theorem 4.1 there is no y > m such that y + σ(y) ≤ n, and therefore, by

Theorem 3.1, the only feasible initial part that is at least m for n and σ is

n. Thus, Cσ(n,m) = {〈n〉}.

Theorem 4.1 demonstrates that feasible initial parts are contiguous if

the restriction function is nondecreasing (recall from Theorem 3.1 that a

positive integer x < n is a feasible initial part for n and σ iff x+ σ(x) ≤ n).

Corollary 4.1 then uses this result to compute the set Cσ(n,m) when m +

σ(m) > n. Since there is no feasible initial part with value at least m when

m 6= n, the only composition which remains is the singleton composition

〈n〉. These results allow us to define efficient generation algorithms for all

compositions interpart restricted by nondecreasing functions, which we shall

spend the remainder of this chapter developing.

It is worth noting, however, that the required nondecreasing property of

the restriction functions should not be seen as a limiting factor of the overall

framework. It is not difficult to introduce an extra function into the frame-

work which, given a particular value x computes the next feasible initial part

for n and σ. If such a function were defined by the user, then we could easily

modify the algorithms given in this chapter to efficiently generate composi-

tions interpart restricted by an arbitrary function. We have not taken this

step for two reasons. Firstly, doing so would unnecessarily complicate the

algorithms and formalisms involved, without significantly altering the essen-

tial nature of the framework. Secondly, the number of classes of partition

which have been studied that are represented by nondecreasing functions is

very much larger than those that are not. All of the examples we provided

in the previous chapter are defined by nondecreasing functions. Partitions

restricted by functions that are not nondecreasing are relatively obscure (see,

for example, Andrews’ generalisation of difference conditions [And69]). Thus,

an argument could be made for the proposition that nondecreasing restric-

tion functions represent an interesting subset of all possible restrictions and

are deserving of study in their own right.

74

§ 4.2. Recursive Algorithm

4.2 Recursive Algorithm

In this section we shall develop a simple recursive generation algorithm for

interpart restricted compositions for any nondecreasing instance of the re-

striction function. Despite this algorithm’s simplicity, it has the property of

being constant amortised time — the “ultimate goal in efficiency” [MM05]

for generation algorithms. That is, for any nondecreasing instance of the re-

striction function, we can guarantee that the algorithm will generate each of

the compositions in question in constant time, in an amortised sense [CLR90,

ch.18].

The section proceeds as follows. In Section 4.2.1 we discuss the basic

principle behind the generation algorithm. In Section 4.2.2 we implement

this basic principle and prove the correctness of the resulting algorithm.

Then, in Section 4.2.3 we analyse this algorithm, and prove that it has the

required constant amortised time property.

4.2.1 Basic Principle

In Section 3.1.2 we proved the validity of what we referred to as the ‘fun-

damental bijection’ for interpart restricted compositions. In essence, the

fundamental bijection tells us that we can obtain all compositions of n inter-

part restricted by σ, where the initial part is exactly m, by prepending m to

all compositions of n−m interpart restricted by σ, where the initial part is

at least σ(m). This procedure ensures that we retain the properties required

for a composition a1 . . . ak to be a member of the set Cσ(n). We shall briefly

summarise the reasons for this here since it is the fundamental basis of our

recursive generation algorithm (and indeed all subsequent algorithms).

Suppose m and and n are positive integers such that m+ σ(m) ≤ n, and

suppose the composition a1 . . . ak is an element of the set Cσ(n −m,σ(m));

then let b1 . . . bk+1 = m · a1 . . . ak. We wish to verify that b1 . . . bk+1 is an

element of the set Cσ(n). Clearly, all elements of b1 . . . bk+1 are positive

integers, and it is not difficult to see that b1 + · · · + bk+1 = n. Thus, the

only remaining property we need to demonstrate is that σ(bj) ≤ bj+1 for

1 ≤ j < k + 1; and we already know that σ(bj) ≤ bj+1 for 2 ≤ j < k + 1,

75

§ 4.2. Recursive Algorithm

as b2 . . . bk+1 is an element of the set Cσ(n −m,σ(m)). It remains, then, to

show that σ(b1) ≤ b2. By definition, the set Cσ(n − m,σ(m)) contains all

compositions of n −m interpart restricted by σ where the initial part is at

least σ(m): therefore, σ(m) ≤ b2. We know b1 = m, and the property is

therefore fulfilled.

This is the essence of the algorithm. We iterate over all feasible initial

parts x for n and σ and for each value of x we recursively generate the inter-

part restricted compositions of n− x with initial part at least σ(x). There is

a technical aspect to how this is actually implemented. If we were to naively

implement this approach, it would involve the storage and manipulation of

the entire set of interpart restricted compositions. But for the purpose of

generation we do not need the entire set of objects to be in memory con-

currently: we seek only to successively populate a single data structure with

the objects we require. Once a complete object is available in memory, we

make it available to the program on whose behalf we are generating the ob-

jects. We shall discuss the means of implementing this strategy in a recursive

generation algorithm in the next subsection.

4.2.2 Algorithm

There is a conceptual difficulty in the recursive generation of combinatorial

objects. The natural mode for recursive algorithms is to decompose the prob-

lem at hand into recursive subproblems, and compute the required value by

combining the values returned by its recursive invocations on the subprob-

lems. If we apply this conceptual idea directly to combinatorial generation,

however, we are faced with the problem of returning entire sets of objects;

we then extend each object in the set in the appropriate manner and return

the (possibly enlarged) set back up the call chain. This approach is obviously

untenable, as we may require exponential space to store all of the objects we

generate.

Page & Wilson provided an elegant solution to this problem [PW79]. By

recursing over the index of the value under consideration, instead of recursing

over complete sets of objects, we can use one global data structure to hold

76

§ 4.2. Recursive Algorithm

Algorithm 4.1 RecGenσ(n,m, k)

Require: 1 ≤ m ≤ n and σ : Z+ → Z+ is nondecreasing
1: x← m
2: while x+ σ(x) ≤ n do
3: ak ← x
4: RecGenσ(n− x, σ(x), k + 1)
5: x← x+ 1
6: end while
7: ak ← n
8: visit a1 . . . ak

the object we are currently attending to. In this way we can sequentially

generate all of the objects in turn, making them available, when appropriate,

to the consuming procedure via the visit keyword. Using this technique we

can treat recursive invocations as if they we were generating the entire set of

objects we require, and the generation algorithms are then relatively simple

to describe.

RecGenσ (Algorithm 4.1) uses Page & Wilson’s technique to generate

all interpart restricted compositions. Each invocation RecGenσ(n,m, k)

populates a global array a with each interpart restricted composition of n and

σ with initial part at least m in array indexes above k. Each time a complete

composition is present in the array, we visit the composition before visiting

the next one in some other invocation. Thus, we implement the fundamental

bijection for interpart restricted compositions via Page & Wilson’s technique

in a recursive algorithm with parsimonious memory requirements.

Therefore, when we speak of ‘prefixing m to all interpart restricted com-

positions of n−m with first part at least σ(m)’, we simply assign the value

m to the array index currently under consideration, and use subsequent re-

cursive invocations to visit all interpart restricted compositions of n−m with

first part at least σ(m), which are then effectively prefixed with value m. An

example of Algorithm 4.1 generating a complete set of interpart restricted

compositions is given in Figure 4.1, where we demonstrate the complete set

of states the array a traverses in the process of generating all compositions

of 7 interpart restricted by the function σ(x) = x+ 1.

77

§ 4.2. Recursive Algorithm

s1 = 1 ∅ ∅
O

s2 = 1 2 ∅
O

s3 = 1 2 4
O

s4 = 1 6 4
O

s5 = 2 6 4
O

s6 = 2 5 4
O

s7 = 3 5 4
O

s8 = 3 4 4
O

s9 = 7 4 4
O

Figure 4.1: Array state-transition diagram for recursive ascending composi-
tion generation algorithm. Indices marked with the O symbol are the indices
in which a value is assigned to change the state of the array, and array seg-
ments outlined in bold are the portions that are visited.

In general, the initial invocation RecGenσ(n, 1, 1) generates all composi-

tions of n interpart restricted by σ. We assume that arrays are indexed from

1; minor modifications only are required to use a 0 indexed array. We shall

now establish that RecGenσ(n,m, 1) correctly generates the set Cσ(n,m)

for any nondecreasing restriction function.

Theorem 4.2. For every nondecreasing function σ : Z+ → Z+ and all

positive integers m ≤ n, RecGenσ(n,m, 1) generates the set Cσ(n,m) in

lexicographic order.

Proof. Suppose σ : Z+ → Z+ is an arbitrary nondecreasing function. We

proceed by strong induction on n.

Base case: n = 1. Since 1 ≤ m ≤ n, we know that m = 1. Then, as the

codomain of σ is Z+ the condition on line 2 fails, and so we proceed directly

to line 7, assign a1 ← 1, and visit this composition. Clearly Cσ(1, 1) = 〈1〉,
and so the base case of our induction holds.

Induction step: Suppose for some positive integer n that the invocation

RecGenσ(n′,m′, 1) generates the set Cσ(n′,m′) in lexicographic order for all

positive integers m′ ≤ n′ < n. Consider the invocation RecGenσ(n,m, 1).

Suppose that m + σ(m) > n. Upon entering the algorithm we assign

x ← m, and as m + σ(m) > n the test on line 2 fails, and we do not

78

§ 4.2. Recursive Algorithm

enter the while loop. We then assign a1 ← n, visit 〈n〉 and terminate. By

Corollary 4.1 Cσ(n,m) = {〈n〉}, and so the algorithm correctly generates the

set Cσ(n,m). Furthermore, as there is only one element in the set, we also

visit each element in lexicographic order.

Suppose, on the other hand, that m + σ(m) ≤ n. Upon entry we as-

sign x ← m, enter the while loop and assign a1 ← m. We then invoke

RecGenσ(n −m,σ(m), 2). By the inductive hypothesis we know that the

invocation RecGenσ(n − m,σ(m), 1) correctly generates the set Cσ(n −
m,σ(m)). Therefore, by Page and Wilson’s technique we know that assign-

ing a1 ← m and invoking RecGenσ(n−m,σ(m), 2) generates all interpart

restricted compositions of n where the initial part is exactly m. As m is the

smallest possible value for the initial part, there cannot be any compositions

that lexicographically precede the first composition visited by this invocation;

and as values for the initial part are generated in strictly increasing order,

we know that all compositions are visited in lexicographic order. It is easy

to establish that all feasible values of the initial part are generated, as we

start at the smallest possible value and terminate when x+ σ(x) > n. The-

orem 4.1 demonstrates that all feasible initial parts are contiguous, and by

Corollary 4.1 we know that when x+σ(x) > n only one composition remains.

Therefore, we know that we visit all compositions in which the number of

parts is at least 2 in lexicographic order, and we then visit the remaining

composition 〈n〉, which is the lexicographically last, and terminate.

Therefore, RecGenσ(n,m, 1) correctly generates the set Cσ(n,m) for all

positive integers m ≤ n, and as σ is arbitrary, for all nondecreasing functions

σ : Z+ → Z+.

Having proved the correctness of RecGenσ we shall now consider the

efficiency of the algorithm.

4.2.3 Analysis

The constant amortised time performance of RecGenσ (Algorithm 4.1) is

easily established because of the simple structure of the generation procedure.

This structure ensures that exactly one composition is visited per invocation,

79

§ 4.3. Succession Rule

and as the algorithm visits all elements of Cσ(n,m), counting the number of

invocations is trivial. We formally prove this property as follows.

Theorem 4.3. Algorithm 4.1 generates Cσ(n,m) in constant amortised time.

Proof. The cost of each invocation of RecGenσ is constant, as each loop

iteration is associated with a recursive invocation. We can therefore obtain

an asymptotic bound on the total time to generate the set Cσ(n,m) by count-

ing the total number of invocations required. (We explicitly disregard time

spent visiting objects, as we are interested in the cost of generation only.)

Inspection of RecGenσ reveals that we visit exactly one sequence per in-

vocation, and so we know that it requires exactly Cσ(n,m) invocations to

visit all compositions restricted by the function σ. The algorithm therefore

requires O(Cσ(n,m)) time to generate all composition interpart restricted

by σ, thus requiring only constant time for each composition, on average.

Therefore the algorithm is constant amortised time.

We shall compare a concrete instantiation of RecGenσ to some algo-

rithms from the literature in Section 5.2, where we consider the special case

of generating the unrestricted partitions of n. No other commensurable algo-

rithms exist in the literature and so we shall proceed with our development

of interpart restricted composition generation algorithms in the next section,

postponing our comparisons until Chapter 5.

4.3 Succession Rule

In the previous section we developed a simple recursive algorithm to generate

all interpart restricted compositions of n for any nondecreasing instance of

the restriction function. Recursive algorithms are useful in certain contexts,

but it is also useful to have a more direct means of generating combinatorial

objects. In Section 4.3.1 we develop the abstract succession rule, the funda-

mental basis of the generation algorithm we devise in Section 4.3.2. Then,

in Section 4.3.3 we analyse the algorithm proving that it has the required

constant amortised time property. Finally, in Section 4.3.4 we compare our

succession-rule based algorithm with some algorithms from the literature.

80

§ 4.3. Succession Rule

4.3.1 Basic Principle

A lexicographic succession rule for combinatorial objects is some simple ex-

pression that transforms a given object into its immediate lexicographic suc-

cessor [Kem98]. Lexicographic succession rules form the basis of any iterative

lexicographic generation algorithm, and defining a procedure to transform a

particular object into its successor is the classical mode of combinatorial gen-

eration [NW78, p.3]. The algorithms we define follow the model advocated

by Knuth [Knu04b, p.1] where, instead of defining a procedure to transform

a particular object into its successor, we define algorithms that generate all

objects of the required class. This model is more efficient [Sed77, p.143] and

also makes the process of analysing generation algorithms more transparent.

Nevertheless, a simple succession rule is invaluable for both the development

and verification of generation algorithms.

In this subsection we develop the formal succession rule for interpart

restricted compositions. Thus, given a composition a1 . . . ak of n interpart

restricted by some function σ : Z+ → Z+, we develop a rule that transforms

a1 . . . ak into its immediate lexicographic successor Sσ(a1 . . . ak). Knuth ex-

plains the general solution to finding the lexicographic successor of some

combinatorial pattern a1 . . . an [Knu04d, p.2]:

In general, the lexicographic successor of any combinatorial pat-

tern a1 . . . an is obtainable by a three step procedure:

1. Find the largest j such that aj can be increased.

2. Increase aj by the smallest feasible amount.

3. Find the lexicographically least way to extend the new a1 . . . aj

to a complete combinatorial pattern.

This procedure identifies three separate problems we need to solve to gen-

erate the lexicographic successor of a given interpart restricted composition.

We shall address these subproblems in turn: we first examine the problem of

finding the largest index j such that aj can be increased, while the resulting

composition still has the properties required of an element of Cσ(n). Steps

81

§ 4.3. Succession Rule

(2) and (3) prove to be interrelated, and reduce to computing the lexico-

graphically least element of the set Cσ(n,m); we shall address this problem

immediately after solving step (1) in Knuth’s three step process in the fol-

lowing lemma.

Lemma 4.1. For all positive integers n and all functions σ : Z+ → Z+, for

all a1 . . . ak ∈ Cσ(n)\{〈n〉} there exists some b1 . . . bl ∈ Cσ(n), where l ≥ k−1,

such that aj = bj for 1 ≤ j ≤ k − 2 and ak−1 < bk−1.

Proof. Suppose n is an arbitrary positive integer and σ : Z+ → Z+ is an

arbitrary function. Let a1 . . . ak be an arbitrary element of Cσ(n)\{〈n〉}. Let

b1 . . . bl = a1 . . . ak−2〈ak−1 + ak+1〉. Clearly all parts of b1 . . . bl are positive

integers, as all parts of a1 . . . ak are positive integers. We also know that

b1 + · · · + bl = n, as a1 + · · · + ak = n. Furthermore, as σ(ak−2) ≤ ak−1, it

is apparent that σ(ak−2) ≤ ak−1 + ak, and so σ(bj) ≤ bj+1 for 1 ≤ j < l.

Therefore, b1 . . . bl ∈ Cσ(n). Then, as ak−1 < bk−1, the proof is complete.

In Lemma 4.1 we proved that there is always some value that we can add

to ak−1 to obtain another element of Cσ(n), and so we know that k − 1 is

the largest value j such that aj can be increased. Thus, step (1) of our three

step procedure to find the lexicographic successor of a1 . . . ak is solved, and

we are now in a position to address steps (2) and (3) directly.

Steps (2) and (3) require that we increase the value of ak−1 by the small-

est feasible amount and extend a1 . . . ak−1 in the lexicographically least way

possible to a complete interpart restricted composition of n. We can equiv-

alently consider this to be problem of generating the lexicographically least

composition in the set Cσ(ak−1 + ak, ak−1 + 1), as this satisfies both of our

requirements: we are increasing ak−1 by the smallest increment possible, and

we are also computing the lexicographically least extension for the existing

sequence. Thus, generating the lexicographic successor of any a1 . . . ak in

Cσ(n) \ {〈n〉}, Sσ(a1 . . . ak), reduces to attaching Mσ(ak−1 + ak, ak−1 + 1) to

the end of a1 . . . ak−2. (Recall from Definition 4.2 that the function Mσ(n,m)

is defined as computing the lexicographically least composition of the set

Cσ(n,m).) Formally, we have the following theorem.

82

§ 4.3. Succession Rule

Theorem 4.4 (Lexicographic Successor). For all positive integers n and all

functions σ : Z+ → Z+, for all elements of Cσ(n) \ {〈n〉},

Sσ(a1 . . . ak) = a1 . . . ak−2Mσ(ak−1 + ak, ak−1 + 1) (4.1)

Proof. Suppose n is an arbitrary positive integer and σ : Z+ → Z+ is an

arbitrary function. Let a1 . . . ak be an arbitrary element of Cσ(n) \ {〈n〉}.
Clearly, there is no positive integer x such that a1 . . . ak−1〈ak + x〉 ∈ Cσ(n).

By Lemma 4.1 there exists at least one sequence b1 . . . bl ∈ Cσ(n) such

that aj = bj for 1 ≤ j ≤ k − 2 and ak−1 < bk−1. The initial part of

Mσ(ak + ak−1, ak−1 + 1) is the least possible value we can assign to ak−1;

and the remaining parts (if any) are the lexicographically least way to ex-

tend a1 . . . ak−1 to a complete interpart restricted composition of n and σ.

Therefore, Sσ(a1 . . . ak) = a1 . . . ak−2Mσ(ak−1 + ak, ak−1 + 1), as required.

Using (4.1) we can now compute the lexicographic successor of any given

composition (except 〈n〉, which has no successor) from the set Cσ(n). We have

shown that computing the lexicographic successor of a given composition

essentially reduces to computing the lexicographically least element of an

intensionally specified set of interpart restricted compositions. We have not,

however, indicated how we might compute this sequence; we address this

problem, along with the full implementation of (4.1), in the next subsection.

4.3.2 Algorithm

In the previous subsection we developed an abstract succession rule for inter-

part restricted compositions; we now turn to the problem of implementing

this rule as an iterative generation algorithm. Note that the succession rule

we developed did not require that the restriction function be nondecreasing.

Just so: (4.1) is an abstract device, and can be applied to any composition of

n interpart restricted by an arbitrary function σ : Z+ → Z+. The reason that

we must impose the nondecreasing requirement on the restriction function

is that it is required for computational efficiency. The succession rule relies

on the computation of the lexicographically least element of a set of inter-

83

§ 4.3. Succession Rule

part restricted compositions, and the efficient computation of this sequence

requires that the restriction function must be nondecreasing.

Definition 4.2 states that the function Mσ(n,m) is defined as computing

the lexicographically least element of the set Cσ(n,m). In the following the-

orem we prove the correctness of a simple recurrence equation to compute

this sequence for any positive integer n and any nondecreasing restriction

function.

Theorem 4.5 (Lexicographic Minimum). For all positive integers m ≤ n

and nondecreasing functions σ : Z+ → Z+, the recurrence

Mσ(n,m) = m ·Mσ(n−m,σ(m)) (4.2)

holds, where Mσ(n,m) = 〈n〉 if m+ σ(m) > n.

Proof. Suppose that m ≤ n are arbitrary positive integers, and σ : Z+ →
Z+ is an arbitrary nondecreasing function. By the fundamental bijection

Theorem 3.2, m ·Mσ(n−m,σ(m)) is an element of the set Cσ(n,m), and by

Lemma 3.1, 〈n〉 is always an element of the set Cσ(n,m). Thus, the recurrence

(4.2) computes an element of the set Cσ(n,m).

By Corollary 4.1, Cσ(n,m) = {〈n〉} if m + σ(m) > n, and the basis of

recurrence (4.2) therefore trivially holds. As m is the minimum value for

the initial part of all compositions in Cσ(n,m) by definition, it is clear that

the initial part of the lexicographically least element of Cσ(n,m) must be m;

hence, the initial part a1 of Mσ(n,m) is correctly chosen by recurrence (4.2).

By the fundamental bijection, Theorem 3.2, the remaining parts a2 . . . ak of

Mσ(n,m) must be from the set Cσ(n−m,σ(m)), and clearly a2 . . . ak must be

the lexicographically least element of this set, or Mσ(n−m,σ(m)). Thus, the

recurrence (4.2) holds for all positive integers m ≤ n and all nondecreasing

functions σ : Z+ → Z+.

Less formally, Theorem 4.5 shows that we obtain the lexicographically

least composition in Cσ(n,m) by appending m to the lexicographically least

composition in Cσ(n−m,σ(m)). If m+σ(m) > n then there are no composi-

tions in Cσ(n,m) with more than one part, leading us to conclude that there

84

§ 4.3. Succession Rule

is only one possible composition; and this must be the lexicographically least.

As an example, let σ(x) = x+ 1 and let us compute the sequence Mσ(10, 2).

Using recurrence (4.2), we compute Mσ(10, 2) = 2 ·Mσ(8, 3); we then com-

pute Mσ(8, 3) = 3 ·Mσ(5, 4). Evaluating Mσ(5, 4) we see that 4 + σ(4) > 5

and so terminate recursion, returning Mσ(5, 4) = 〈5〉. Then, gathering the

successive initial parts we computed in the previous invocations together, we

arrive at Mσ(10, 2) = 235.

To see why we need to enforce the condition that σ is a nondecreasing

function for the recurrence above to work, consider the following example.

Using again our contrived restriction function σ(x) = x+1+10[x = 3∨x = 4],

we shall examine the problem of computing Mσ(13, 3). As 3 + σ(3) 6≤ 13,

we know that 3 is not a feasible initial part; but that does not, in this case,

mean that 〈13〉 is the lexicographically least element of Cσ(13, 3). It tran-

spires that Mσ(13, 3) = 58; to find this composition we must test each value

3 . . . until we find a feasible initial part, and then recurse to find the remain-

ing parts in the sequence. Clearly, this approach can be significantly less

efficient than the direct and predictable method given in (4.2). Thus, solving

the problem of computing Mσ(n,m) in the full generality of the framework

would have unacceptable consequences on the efficiency of generation for the

instances where we do not need to search for feasible initial parts: namely,

those instances where the restriction function is nondecreasing.

Accepting the limitations of what we can generate efficiently under the

current formulation of the interpart restricted compositions framework, we

now move on to implementing (4.2) as an iterative algorithm. (As we have

previously stressed, for all of the examples given in Chapter 3, the corre-

sponding restriction function is nondecreasing, and many of these classes of

restricted partition currently have no generation algorithm.) This algorithm,

LexMinσ (Algorithm 4.2), is quite simple, but as it is the nucleus of the

direct implementation of the lexicographic succession rule, we shall consider

it in some detail.

LexMinσ directly computes the value Mσ(n,m) for any nondecreasing

function σ — the invocation LexMinσ(n,m) returns the lexicographically

least element of the set Cσ(n,m). LexMinσ is a direct iterative implemen-

85

§ 4.3. Succession Rule

Algorithm 4.2 LexMinσ(n,m)

Require: 1 ≤ m ≤ n and σ : Z+ → Z+ is nondecreasing
1: k ← 1
2: x← m
3: y ← n−m
4: while σ(x) ≤ y do
5: ak ← x
6: x← σ(x)
7: y ← y − x
8: k ← k + 1
9: end while

10: ak ← x+ y
11: return a1 . . . ak

tation of the recursive rule given in (4.2), and works in precisely the same

fashion. Specifically, we assign a1 ← m, and then iteratively implement the

recursive rule until we have a reached a value that is not a feasible initial part.

We then insert the singleton composition into the appropriate index and re-

turn the resulting composition. The variables in LexMinσ are arranged in

a slightly different manner from our previous discussions: we assign x← m,

and use this variable to keep track of the value for the next value for ak. We

also set y ← n−m ; the test m + σ(m) ≤ n is now equivalent to σ(x) ≤ y,

and so requires one less memory access and addition per iteration of the while

loop. We shall now prove the correctness of LexMinσ.

Theorem 4.6. For all positive integers m ≤ n and all nondecreasing func-

tions σ : Z+ → Z+, LexMinσ(n,m) = Mσ(n,m).

Proof. Suppose σ : Z+ → Z+ is an arbitrary nondecreasing function, and

proceed by strong induction on n.

Base case: n = 1. Since 1 ≤ m ≤ n, we known that m = 1. Upon entry,

we assign x ← 1 and y ← 0. As the codomain of σ is Z+, the loop entry

condition on line 4 fails, and so we proceed directly to line 10. We then

assign a1 ← 1 + 0, and return the composition 〈1〉. Clearly Mσ(1, 1) = 〈1〉
and therefore LexMinσ(1, 1) = Mσ(1, 1), as required.

86

§ 4.3. Succession Rule

Induction step: Suppose, for some positive integer n, LexMinσ(n′,m′) =

Mσ(n′,m′) for all positive integers m′ ≤ n′ < n. Consider the invocation

LexMinσ(n,m), for an arbitrary positive integer m ≤ n.

Suppose m + σ(m) > n. Upon entry of the algorithm we assign x ← m

and y ← n − m, and so m + σ(m) > n ⇐⇒ σ(x) > y. Hence, the loop

entry condition on line 4 fails, and we immediately proceed to line 10. We

then assign a1 ← m + n − m, and return the composition 〈n〉. By (4.2),

Mσ(n,m) = 〈n〉, and hence LexMinσ(n,m) = Mσ(n,m), as required.

Suppose that m+σ(m) ≤ n. Upon entry of the algorithm we assign x←
m and y ← n−m, and so m+σ(m) ≤ n ⇐⇒ σ(x) ≤ y. Therefore, we enter

the loop and assign a1 ← m. Upon reaching line 8, the variables have the

following states: x = σ(m), y = n−m−σ(m) and k = 2. As we have a1 = m,

we have correctly assigned the initial part by (4.2) during the first iteration

of the loop: the remaining parts, i.e. the composition Mσ(n−m,σ(m)), must

clearly be assigned in the remaining iterations.

By the inductive hypothesis, LexMinσ(n−m,σ(m)) = Mσ(n−m,σ(m)).

Therefore we must show that the variables x and y are in the same state im-

mediately after the first iteration of the loop in LexMinσ(n,m) and imme-

diately before the first iteration of the loop in LexMinσ(n−m,σ(m)). Upon

entry to LexMinσ(n−m,σ(m)), we set x← σ(m) and y ← n−m− σ(m);

and these are the same values held by the corresponding variables after the

first iteration of the loop in LexMinσ(n,m). Thus, by the inductive hypoth-

esis, LexMinσ(n,m) = Mσ(n,m). Therefore, as m is an arbitrary positive

integer such that m ≤ n, LexMinσ(n,m) = Mσ(n,m) for all m; hence

LexMinσ(n,m) = Mσ(n,m) for all positive integers m ≤ n and all nonde-

creasing functions σ : Z+ → Z+.

Having proved the correctness of our procedure for computing the lexico-

graphically least element of Cσ(n,m), we can now move on to the algorithm to

generate Cσ(n,m) in lexicographic order, RuleGenσ (Algorithm 4.3). Each

iteration of the main loop (lines 5 to 15) in RuleGenσ implements a single

application of the succession rule (4.1). On lines 5 and 7 we assign the values

of ak − 1 and ak−1 + 1 to variables y and x respectively. Then, on lines 8

87

§ 4.3. Succession Rule

s1 = 0 ∅ ∅
O

s2 = 0 7 ∅
O

s3 = 1 7 ∅
O

s4 = 1 2 ∅
O

s5 = 1 2 4
O

s6 = 1 6 4
O

s7 = 2 6 4
O

s8 = 2 5 4
O

s9 = 3 5 4
O

s10 = 3 4 4
O

s11 = 7 4 4
O

Figure 4.2: Array state-transition diagram for the lexicographic succes-
sion rule generation algorithm for interpart restricted compositions. Indices
marked with the O symbol are the indices in which a value is assigned to
change the state of the array, and array segments outlined in bold are the
portions that are visited.

to 14 we attach Mσ(ak−1 + ak, ak−1 + 1) after ak−2, and on line 15 we visit

the resulting composition, making it available to the consuming procedure.

An example of RuleGenσ generating a complete set of interpart re-

stricted compositions is given in Figure 4.2. In this figure we see the se-

quence of states the generation array goes through during the execution of

RuleGenσ(7, 1) when σ(x) = x + 1. States s1 and s2 correspond to the

initialisation steps of the algorithm, where we insert the appropriate values

into the array to ensure that the first composition visited is Mσ(7, 1). States

s3–s5 correspond to the insertion of Mσ(7, 1) = 124 into the array, and this

composition is subsequently visited. Returning to the head of the main loop,

we discover that σ(x) 6≤ y, and so we do not enter the inner loop, and instead

assign a2 ← 6, giving us state s6, which is then visited. Execution continues

along these lines until we reach s11, where we visit the singleton composition

〈7〉 and terminate.

We formally prove the correctness of RuleGenσ in the following theorem.

In the proof we use the concept of the rank [KS98, p.31–32] of an interpart

restricted composition. The rank of a combinatorial object is the number of

objects that preceed it in the listing order. Hence, in this context, we see

88

§ 4.3. Succession Rule

Algorithm 4.3 RuleGenσ(n,m)

Require: 1 ≤ m ≤ n and σ : Z+ → Z+ is nondecreasing
1: k ← 2
2: a1 ← m− 1
3: a2 ← n−m+ 1
4: while k 6= 1 do
5: y ← ak − 1
6: k ← k − 1
7: x← ak + 1
8: while σ(x) ≤ y do
9: ak ← x

10: x← σ(x)
11: y ← y − x
12: k ← k + 1
13: end while
14: ak ← x+ y
15: visit a1 . . . ak
16: end while

that the rank of Mσ(n,m) is 0, and the rank of 〈n〉 is Cσ(n,m) − 1, and if

any given composition a1 . . . ak ∈ Cσ(n,m) \ {〈n〉} has rank r, then the rank

of Sσ(a1 . . . ak) must be r + 1.

Theorem 4.7. For every nondecreasing function σ : Z+ → Z+ and all

positive integers m ≤ n, RuleGenσ(n,m) generates the set Cσ(n,m) in

lexicographic order.

Proof. Suppose σ : Z+ → Z+ is an arbitrary nondecreasing function, and

suppose m ≤ n are arbitrary positive integers. We proceed by induction on

the rank r of the elements of Cσ(n,m).

Base case: r = 0. Upon initialisation of RuleGenσ(n,m) we enter the

main loop, and set x ← m, y ← n − m and k ← 1 before reaching line 8.

These values are identical to the values of the corresponding variables in the

invocation LexMinσ(n,m) before reaching line 4 in that algorithm. Since

lines 4–10 in LexMinσ and lines 8–14 in RuleGenσ are identical, we know

that a1 . . . ak = Mσ(n,m) upon reaching line 15 in the first iteration of

89

§ 4.3. Succession Rule

RuleGenσ(n,m) by Theorem 4.6. Therefore, the composition at rank r = 0

is correctly visited.

Induction step: Suppose for some r ≤ Cσ(n,m)− 1 that the composition

a1 . . . ak has been visited by RuleGenσ(n,m). Let us examine the next

iteration of the main loop.

Suppose that r = Cσ(n,m) − 1. The lexicographically greatest element

of Cσ(n,m) is 〈n〉, and therefore k = 1. Upon returning to line 4 we see that

the loop entry condition is false, and terminate. Therefore, if we have visited

the lexicographically last composition, we terminate correctly.

Suppose that r < Cσ(n,m)−1. By our argument above, k ≥ 2, and so we

return to the head of the loop, setting x← ak−1+1, y ← ak−1 and k ← k−1.

By the analogy with LexMinσ we will then insert Mσ(ak + ak−1, ak−1 + 1)

into array indices from k − 1 onwards, leaving indices ≤ k − 2 unmodified.

Therefore, we will visit the composition a1 . . . ak−2Mσ(ak−1 +ak, ak−1 + 1) on

line 15, which is the immediate successor of a1 . . . ak by Theorem 4.4.

Therefore, RuleGenσ(n,m) visits all elements of Cσ(n,m) in lexico-

graphic order. Hence, the algorithm correctly generates the set Cσ(n,m) for

any nondecreasing function σ : Z+ → Z+ and all positive integers m ≤ n.

Having proved the correctness of the direct implementation of the lexico-

graphic succession rule, we can now move on to the analysis of this algorithm.

We know that we can generate all elements of the set Cσ(n,m), but can we

do so efficiently? It is this question that we address in the next subsection.

4.3.3 Analysis

In the analysis of RuleGenσ we wish to determine the total number of

‘read’ and ‘write’ operations [Kem98] required to generate all compositions

of n, interpart restricted by a nondecreasing function σ : Z+ → Z+. The

primitive operations in question occur when we read from or write to the

generation array; that is, a statement of the form x ← aj is counted as a

single read operation, and a statement aj ← x represents a single write.

We shall proceed by determining the frequency of certain key instructions in

90

§ 4.3. Succession Rule

the algorithm, from which determining the total number of read and write

operations is then a rudimentary application of Kirchhoff’s Law [Knu72].

The key to analysing RuleGenσ is to note that the k variable is modified

only via increment (line 12) and decrement (line 6) operations. Then, as k is

initialised to 2 and the algorithm terminates when k = 1, we know that there

must be one more decrement than increments performed on the variable.

Formally, let t6(n,m) and t12(n,m) be the number of times lines 6 and 12

are executed, respectively, in the process of generating the set Cσ(n,m) using

RuleGenσ (Algorithm 4.3); we then have the following lemmas.

Lemma 4.2. The number of times line 6 is executed during the execution of

Algorithm 4.3 is given by t6(n,m) = Cσ(n,m).

Proof. By Theorem 4.7, Algorithm 4.3 correctly generates the set Cσ(n,m),

and so line 15 must be executed Cσ(n,m) times. By Kirchhoff’s Law, line 6

is executed as many times as line 15, and so t6(n,m) = Cσ(n,m).

Lemma 4.3. The number of times line 12 is executed during the execution

of Algorithm 4.3 is given by t12(n,m) = Cσ(n,m)− 1.

Proof. Algorithm 4.3 begins with k = 2 and terminates when k = 1, and k

is modified only on lines 6 and 12. The statement k ← k − 1 is executed

Cσ(n,m) times by Lemma 4.2; therefore, the statement k ← k + 1 (line 12)

must be executed Cσ(n,m)− 1 times. Hence, t12(n,m) = Cσ(n,m)− 1.

Using the frequency counts of Lemmas 4.2 and 4.3 we can now count

the total number of read and write operations required to generate the set

Cσ(n,m) using Algorithm 4.3.

Theorem 4.8. Algorithm 4.3 requires RA4.3(n,m) = 2Cσ(n,m) read opera-

tions to generate the set Cσ(n,m).

Proof. Read operations are carried out on lines 5 and 7 which, by Lemma 4.2,

are executed Cσ(n,m) times each. Thus, the total number of read operations

is RA4.3(n) = 2Cσ(n,m).

Theorem 4.9. Algorithm 4.3 requires WA4.3(n,m) = 2Cσ(n,m) − 1 write

operations to generate the set Cσ(n,m), excluding initialisation.

91

§ 4.3. Succession Rule

Proof. Write operations are carried out in Algorithm 4.3 on lines 9 and 14.

By Lemma 4.3, line 9 is executed Cσ(n,m) − 1 times, and by Lemma 4.2,

line 14 is executed Cσ(n,m) times. Thus, WA4.3(n,m) = 2Cσ(n,m)− 1.

Thus, as we require a total of 2Cσ(n,m) read and 2Cσ(n,m) − 1 write

operations, we can see that we require an average of two read and two write

operations (in an amortised sense [CLR90, ch.18]) to generate each element

of Cσ(n,m), for any nondecreasing instance of the restriction function. Re-

gardless of whether we are generating unrestricted compositions or Göllnitz-

Gordon partitions (see Section 3.1.3), we require only two read and two write

operations, on average, for each composition generated.

Counting the read and write operations incurred during the execution of

an algorithm may seem like a rather drastic over-simplification of the com-

putational cost of generation. Although we address this problem in greater

detail in Chapter 5, a word of justification to allay the reader’s misgivings is

warranted at this juncture. If we consider RuleGenσ again for a moment,

we can see that read and write operations occur within both of the loops of

the algorithm, and all operations within these loops are certainly constant

time operations — assuming, of course, that the restriction function σ is a

constant time operation. Thus the total execution time of the algorithm will

be proportional to the total number of read and write operations.

Counting read and write operations, however, also provides us with a

deeper analysis of the problem of generation: it provides us with a measure

of the complexity of the problem [Kem98]. Algorithm 4.3 is only one par-

ticular implementation of the lexicographic succession rule (4.1), and one

that assumes the restriction function is nondecreasing. But it is a direct

and literal implementation of this rule, and hence provides us with a valu-

able worst-case measure of the cost of generating interpart restricted com-

positions. Therefore, our theoretical model, our “simplified idealisation of

reality” [KY76], should be a reasonable reflection of actual computational

experience. Then, to simplify matters even further, we can say that gener-

ating all interpart restricted compositions of n requires O(Cσ(n)) read and

O(Cσ(n)) write operations. Moreover, this is true for any instance of the

92

§ 4.3. Succession Rule

restriction function, nondecreasing or otherwise. Setting aside the details of

how we might achieve this, it seems reasonable to assume that we can always

determine the next feasible initial part in constant time. Thus, with minor

modifications to RuleGenσ, we can generate all interpart restricted compo-

sitions for an arbitrary restriction function in O(Cσ(n)) read and O(Cσ(n))

write operations.

It is possible to improve on this complexity by noting a special case in

the succession rule. The special case allows us to generate the lexicographic

successor of certain compositions in exactly two write and zero read oper-

ations. Making this observation reduces both the complexity of generation

in terms of decreasing the total number of read operations, and the actual

computational cost of generating all interpart restricted compositions. We

develop this idea fully in the next section. First, however, to gain a little per-

spective on the efficiency of RuleGenσ we shall perform a short empirical

analysis of some algorithms from the literature that generate some subset of

the interpart restricted compositions.

4.3.4 Comparison with Existing Algorithms

Chapter 5 is entirely dedicated to the task of comparing concrete instantia-

tions of the algorithms we develop in this chapter with existing descending

composition generation algorithms. Generating all partitions is an important

problem [Knu04c], and so we conduct our comparison of ascending composi-

tion and descending composition generation algorithms at length. There are,

however, some existing algorithms that are also capable of generating some

subset of the interpart restricted compositions. Thus, in this subsection we

briefly compare these algorithms with our RuleGenσ to provide a degree of

perspective on its efficiency, relative to existing algorithms.

The first algorithm we consider is Nārāyan. a’s algorithm to generate all

unrestricted compositions of n in reverse lexicographic order, as presented

by Knuth [Knu04f, ex.15]. Although other algorithms exist to generate un-

restricted compositions [Knu04b, ex.12], Nārāyan. a’s algorithm is the only

true generator available that generates all unrestricted compositions lexico-

93

§ 4.3. Succession Rule

σ(x) = 1 σ(x) = x+ 1 σ(x) = x+ 2

n 27 28 30 164 175 201 206 220 252
6×107 1×108 5×108 5×107 1×108 5×108 5×107 1×108 5×108

J 0.86 0.85 0.86 0.53 0.50 0.49 0.58 0.54 0.53
C 0.67 0.68 0.69 0.55 0.55 0.54 0.59 0.58 0.57

Nārāyan. a [Knu04f, ex.15] Riha & James [RJ76] Riha & James [RJ76]

Table 4.1: A comparison the rule-based algorithm to generate interpart re-
stricted compositions with Nārāyan. a’s and Riha & James’ algorithms. The
figures provided are the time required by RuleGenσ to generate the specified
set of compositions divided by the time required by the particular algorithm.

graphically. Thus, we shall compare Nārāyan. a’s algorithm with a concrete

instantiation of RuleGenσ where we replace all instances of σ(x) with 1.

The second algorithm we shall compare, and the only available algorithm

that generates any substantial subset of the interpart restricted composi-

tions, is due to Riha & James [RJ76]. Riha & James’ algorithm generates

descending k-compositions in reverse lexicographic order, with a flexible class

of restrictions on the parts. The particular restriction that we are interested

in here allows us to specify a minimum difference between consecutive pairs

of parts, thus allowing us to generate, for instance, the partitions into dis-

tinct parts and Rogers-Ramanujan partitions. We therefore compare Riha

and James’ algorithm with concrete instantiations of RuleGenσ where we

replace all instances of σ(x) with x+ 1 and x+ 2.

The results of these comparisons are given in Table 4.1, where we report

the ratio of the total time required by RuleGenσ, divided by the total time

required by the other algorithms, to generate the compositions in question

for a range of values of n. We shall explain the methodology used to obtain

such results in detail in Section 4.4.4, but for now we shall simply note

that the algorithms were implemented in the Java and C languages, and the

minimum of five runs of each algorithm is used as the definitive duration for

each value of n. The values of n are chosen such that n is smallest integer

where Cσ(n) > 5× 107, Cσ(n) > 1× 107 and Cσ(n) > 5× 108.

94

§ 4.4. Accelerated Algorithm

We can immediately see from Table 4.1 that RuleGenσ is substantially

more efficient than the competing methods. In the case of Nārāyan. a’s algo-

rithm, the difference between the algorithms is a constant factor of 14% in

the Java implementations and around 30% in the C versions. This is consis-

tent with Nārāyan. a’s algorithm being constant amortised time, but clearly

the hidden constant in RuleGenσ is smaller, resulting in a more efficient

algorithm. Riha & James’ algorithm is not constant amortised time, and

this is reflected in Table 4.1. In the cases of both the distinct and Rogers-

Ramanujan partitions of n, the difference between the algorithms increases

for the number of compositions we generating.

The purpose of this section has not been to definitively establish that

RuleGenσ is more efficient that either Nārāyan. a’s or Riha & James’ al-

gorithms: to do so would require a much deeper analysis. The purpose,

rather, has been to illustrate that RuleGenσ is an efficient algorithm in

its own right, and can certainly generate compositions in time comparable

to more specific algorithms from the literature. Having made this point,

we now move on to improving RuleGenσ, not for any particular instance

of the restriction function, but for all instances. We do this by developing

the auxiliary theory of ‘terminal’ and ‘nonterminal’ compositions, and using

this theory to identify some common structure within the set of interpart

restricted compositions.

4.4 Accelerated Algorithm

Lexicographic succession rules are an important theoretical device by which

we may determine an upper bound on the complexity of generating a partic-

ular combinatorial object [Kem98], but literal implementations of these rules

can lead to inefficient algorithms. (We shall see an example of this in Sec-

tion 5.3.2.) A more efficient generation algorithm may be possible if we can

identify some special cases in the succession rule that can be implemented

efficiently.

In this section we identify special cases in the lexicographic succession

rule for interpart restricted compositions. These special cases are based on

95

§ 4.4. Accelerated Algorithm

the observation that we can often generate the successor of a given inter-

part restricted composition by simply subtracting 1 from the last part, and

adding 1 to the second-last part. In Section 4.4.1 we formalise this idea

and develop the basic theory required to formulate, prove the correctness of,

and analyse the resulting algorithm. Then, in Section 4.4.2, we present the

algorithm itself and formally prove its correctness. Following this, in Sec-

tion 4.4.3 we analyse the algorithm in terms of the total number of read and

write operations incurred in the process of generating all interpart restricted

compositions of n for a nondecreasing restriction function.

4.4.1 Basic Principle

The special case that we identify in our general succession rule for inter-

part restricted compositions is most easily seen by means of an example.

In Figure 4.3(a) the compositions of 12 interpart restricted by the function

σ(x) = x + 1 (i.e. the distinct partitions) are shown. Considering, for a

moment, the lexicographically first compositions in this set, 1236 and 1245,

it is not difficult to see that we can efficiently obtain the latter from the

former: we simply set a3 ← 4 and a4 ← 5. Furthermore, if we examine the

composition that immediately follows 1245, it is also not difficult to see that

we can obtain 129 by adding the last two parts of the preceding composition

together. This is the essential principle upon which the accelerated algorithm

of this section operates; but to fully develop, prove the correctness of, and

analyse this algorithm we must develop some auxiliary theory first.

The theory behind the accelerated algorithm of this section relies on iden-

tifying two disjoint subsets of the set Cσ(n), which together comprise the

entire set. We shall refer to these disjoint subsets of Cσ(n) as the terminal

and nonterminal compositions of n and σ. The properties required for a

composition to be terminal or nonterminal are formally defined as follows.

Definition 4.5 (Terminal Composition). For some positive integer n and

a function σ : Z+ → Z+, a composition a1 . . . ak ∈ Cσ(n) is terminal if

k = 1 or σ(ak−1) + σ(σ(ak−1)) ≤ ak. Let Tσ(n,m) denote the set of terminal

compositions in Cσ(n,m), and Tσ(n,m) denote the cardinality of this set (i.e.

96

§ 4.4. Accelerated Algorithm

1

2

3

6

1

2

4

5

1

2

9

1

3

8

1

4

7

1

5

6

1

11

2

3

7

2

4

6

2

10

3

4

5

3

9

4

8

5

7

12 1

2

9

1

11

2

10

3

9

12

(a) (b)

Figure 4.3: Composition blocks and terminal compositions. In (a) we see the
ascending compositions into distinct parts of 12 with block-boundaries, and
in (b) we see the terminal compositions of this set.

Tσ(n,m) = |Tσ(n,m)|).

Definition 4.6 (Nonterminal Composition). For some positive integer n

and a function σ : Z+ → Z+, a composition a1 . . . ak ∈ Cσ(n) is nonterminal

if k 6= 1 and σ(ak−1) + σ(σ(ak−1)) > ak. Let Nσ(n,m) denote the set of

nonterminal compositions in Cσ(n,m), and Nσ(n,m) denote the cardinality

of this set (i.e. Nσ(n,m) = |Nσ(n,m)|).

From Definitions 4.5 and 4.6 it is easy to see that Tσ(n)∪Nσ(n) = Cσ(n).

The properties in question are perhaps a little opaque, and we shall therefore

examine the basic motivation for the definitions before moving to developing

the required theoretical results.

The motivation behind the properties required for a composition to be ter-

minal or nonterminal is simple: we wish to determine if Mσ(ak+ak−1, ak−1+1)

has two or fewer parts. Since computing the lexicographically least compo-

sition of the set Cσ(ak + ak−1, ak−1 + 1) is the nucleus of the procedure for

generating the lexicographic successor of a1 . . . ak, then clearly we can im-

prove over the general case if we know that this sequence has two or fewer

parts. In the following lemma we formalise this notion for the case where the

lexicographically least element of the set Mσ(n,m) has exactly two parts.

Lemma 4.4. For all nondecreasing functions σ : Z+ → Z+ and all positive

integers n and m such that m + σ(m) ≤ n and m + σ(m) + σ(σ(m)) > n,

Mσ(m,m) = 〈m〉〈n−m〉.

97

§ 4.4. Accelerated Algorithm

Proof. Suppose σ : Z+ → Z+ is an arbitrary nondecreasing function, and

suppose n and m are arbitrary positive integers such that m+σ(m) ≤ n and

σ(m) + σ(σ(m)) > n −m. Let a1 . . . ak = Mσ(n,m). Since m + σ(m) ≤ n,

we know that a1 = m and a2 . . . ak = Mσ(n − m,σ(m)) by Theorem 4.5.

Then, examining the value of Mσ(n −m,σ(m)), we see that, since σ(m) +

σ(σ(m)) > n−m we must have a2 . . . ak = 〈n−m〉 by Theorem 4.5. There-

fore, Mσ(m,m) = 〈m〉〈n−m〉, as required.

Using Lemma 4.4 we can now compress the generic succession rule into

two efficiently computable alternatives that can be applied to nonterminal

compositions. The key to this rule is that we know the lexicographic successor

has no more than two parts (which, as we have seen, is the effective definition

of the nonterminal property); having this knowledge, we can implement the

succession rule on nonterminal compositions quite efficiently. The formal

rules are codified in the following theorem.

Theorem 4.10 (Nonterminal Successor). For all positive integers n and all

nondecreasing functions σ : Z+ → Z+, for all a1 . . . ak ∈ Nσ(n),

Sσ(a1 . . . ak) =

a1 . . . ak−2〈ak−1 + 1〉〈ak − 1〉 if σ(ak−1 + 1) ≤ ak − 1;

a1 . . . ak−2〈ak−1 + ak〉 otherwise.

Proof. Suppose n is an arbitrary positive integer and σ : Z+ → Z+ is an

arbitrary nondecreasing function. Suppose a1 . . . ak is an arbitrary element

of Nσ(n). By the generic succession rule of Theorem 4.4, Sσ(a1 . . . ak) =

a1 . . . ak−2Mσ(ak−1+ak, ak−1+1). Clearly, the first k−2 parts of the sequence

computed by the nonterminal succession rule above and the generic succes-

sion rule are equal, and so it remains to show that Mσ(ak−1 + ak, ak−1 + 1)

is equal to 〈ak−1 + 1〉〈ak − 1〉 if σ(ak−1 + 1) ≤ ak − 1 or 〈ak−1 + ak〉 if

σ(ak−1 + 1) > ak − 1.

Suppose σ(ak−1 + 1) ≤ ak − 1. Since a1 . . . ak is nonterminal, σ(ak−1) +

σ(σ(ak−1)) > ak, and as σ is nondecreasing, we can deduce that σ(ak−1 +1)+

σ(σ(ak−1+1)) > ak−1. Then, adding ak−1+1 to both sides of this inequality,

we see that ak−1 +1+σ(ak−1 +1)+σ(σ(ak−1 +1)) > ak−1 +ak, and therefore,

98

§ 4.4. Accelerated Algorithm

by Lemma 4.4, we see that Mσ(ak−1 + ak, ak−1 + 1) = 〈ak−1 + 1〉〈ak − 1〉, as

required.

Suppose σ(ak−1 +1) > ak−1. Then by Theorem 4.5, Mσ(ak−1 +ak, ak−1 +

1) = 〈ak−1 + ak〉, as required. Therefore, the nonterminal succession rule

above is verified.

Theorem 4.10 provides us with sufficient information to derive an efficient

generation algorithm based on the codified succession rules for nonterminal

compositions. To analyse the resulting algorithm we require one further

formal result. In the generation algorithm we treat the cases of terminal

and nonterminal compositions differently: the nonterminal compositions via

a specialised internal loop, and the terminal compositions via a modified

version of the standard lexicographic succession rule. To determine the ac-

tual efficiency of this approach we require a means of enumerating terminal

and nonterminal compositions. We shall approach this problem by counting

the terminal compositions, Tσ(n,m), via a modified version of the recur-

rence used to enumerate interpart restricted compositions. This provides us

with a complete solution to the problem of counting terminal and nontermi-

nal compositions, since the number of nonterminal compositions is given by

Nσ(n,m) = Cσ(n,m)− Tσ(n,m).

Counting the terminal compositions of n, m and σ proves to be quite

similar to counting interpart restricted compositions in general. Consider

again the example given in Figure 4.3 (p.97), where we show the distinct

partitions of 12 and the block structure imposed by terminal and nonterminal

compositions on this set. Figure 4.3(b) contains the terminal compositions

of 12 and σ(x) = x+ 1; these can be seen to share a similar structure as the

overall set, except fewer values are feasible initial parts. We use this property

in the following theorem to enumerate terminal compositions.

Theorem 4.11. For all positive integers m ≤ n and all nondecreasing func-

tions σ : Z+ → Z+ Tσ(n,m) satisfies the recurrence

Tσ(n,m) = Tσ(n−m,σ(m)) + Tσ(n,m+ 1) (4.3)

99

§ 4.4. Accelerated Algorithm

with Tσ(n,m) = 1 if m+ σ(m) + σ(σ(m)) > n.

Proof. The general case of (4.3) is similar to the general case of (3.8) and can

be verified using precisely the same techniques. It remains to demonstrate

that Tσ(n,m) = 1 if m+ σ(m) + σ(σ(m)) > n.

Suppose a1a2 ∈ Cσ(n,m) and m+σ(m)+σ(σ(m)) > n, and suppose that

a1 = m, and therefore, a2 = n−m. As m+σ(m)+σ(σ(m)) > n, we see that

a1 +σ(a1)+σ(σ(a1)) > a2 +a1, and so σ(a1)+σ(σ(a1)) > a2. Therefore, a1a2

is nonterminal. Since σ is nondecreasing, we can see that any a1a2 such that

a1 = m+ x for some positive integer x must also be nonterminal. Therefore,

there are no terminal compositions in Cσ(n,m) with two or more parts. Thus,

the only remaining composition is the singleton composition 〈n〉, and this is

terminal by definition. Hence, Tσ(n,m) = 1 if m+σ(m) +σ(σ(m)) > n.

It would be more satisfactory to derive Tσ(n,m) in terms of the total

number of interpart restricted compositions Cσ(n,m); unfortunately, there

does not appear to be any simple relationship between these numbers in gen-

eral. In some particular cases the relationship is apparent — for instance,

in the case of the unrestricted compositions of n, exactly half of the compo-

sitions in the set are terminal. It is not difficult to prove this assertion in

the particular case when σ(x) = 1, but for more complex instances of the

restriction function, the relationship between Tσ(n,m) and Cσ(n,m) is more

elaborate. In the next chapter we consider this question again for the unre-

stricted partitions of n, and prove that the number of nonterminal partitions

of n is given by p(n) − p(n − 2), where p(n) is the number of unrestricted

partitions of n.

Having developed the theoretical tools required for the construction and

analysis of our accelerated algorithm to generate interpart restricted compo-

sitions, we shall now move on and consider the generation algorithm itself

in the next subsection. In this algorithm we utilise the lexicographic succes-

sion rules for nonterminal compositions to both decrease the average cost of a

write operation in the algorithm and to reduce the number of read operations

required to exactly Tσ(n,m).

100

§ 4.4. Accelerated Algorithm

4.4.2 Algorithm

The direct implementation of the lexicographic succession rule for interpart

restricted compositions, RuleGenσ, generates the successor of a1 . . . ak by

computing the lexicographically least element of the set Cσ(ak−1+ak, ak−1+1),

and visiting the resulting composition. The algorithm operates by imple-

menting exactly one transition per iteration of the main loop. The accel-

erated algorithm, AccelGenσ, developed in this subsection operates on a

slightly different principle: we compute the lexicographically least composi-

tion of Cσ(ak−1 + ak, ak−1 + 1), as before, but we now keep a watchful eye to

see if the resulting composition is nonterminal. If it is we know we can com-

pute the lexicographic successor efficiently, and furthermore, if its successor,

in turn, is nonterminal, we can repeat the process. Otherwise, we revert to

the standard means of computing the lexicographic successor.

To implement this principle we require a modified version of our algorithm

to compute the lexicographically least element of the set Cσ(n,m), one that

identifies nonterminal compositions. We could, of course, use the standard

means and test the resulting composition to see whether it is nonterminal:

if it is, we can apply the nonterminal succession rules, if not, continue as

before. Such an algorithm is, however, inelegant as it involves reading values

back from the generation array and resetting the variables x and y (which

are used to hold the values of ak−1 and ak) back to the appropriate values.

We have all of the information that we require if we terminate the loop used

to generate Mσ(n,m) one iteration early, and this is the approach that we

shall take. The resulting algorithm is more direct and efficient than the more

obvious approach outlined above.

The key segment of our generation algorithm is again the procedure used

to compute Mσ(n,m), and so we shall follow the same pattern in developing

the generation algorithm as in the previous section. That is, we shall first

develop and prove the correctness of the procedure required to generate the

lexicographically least element of the set Cσ(n,m), and then use this proce-

dure to define the generation algorithm itself. Our modified procedure to

compute Mσ(n,m) is given in Algorithm 4.4, and it operates as follows.

101

§ 4.4. Accelerated Algorithm

Algorithm 4.4 LexMin′σ(n,m)

Require: 1 ≤ m ≤ n and σ : Z+ → Z+ is nondecreasing
1: k ← 1
2: x← m
3: y ← n−m
4: while σ(x) + σ(σ(x)) ≤ y do
5: ak ← x
6: x← σ(x)
7: y ← y − x
8: k ← k + 1
9: end while

10: if σ(x) ≤ y then
11: ak ← x
12: ak+1 ← y
13: return a1 . . . ak+1

14: end if
15: ak ← x+ y
16: return a1 . . . ak

Consider the invocation LexMin′σ(n,m), which computes Mσ(n,m). As

before, upon entering the algorithm we assign x ← m and y ← n − m.

When we reach line 4, however, we notice a difference between LexMinσ and

LexMin′σ: the loop entry condition has changed from σ(x) ≤ y to σ(x) +

σ(σ(x)) ≤ y. This condition corresponds to our informal notion of ‘stopping

the loop one iteration early’. Other than this change, the internal operation

of the loop is identical, and we shall therefore assign parts of Mσ(n,m) as

before. We then test if x and y are appropriate values for ak and ak−1. If this

condition is true, we enter the conditional block of lines 11–13, and return

the resulting composition, which we know must be nonterminal because by

the time we reach line 10 we know that the condition σ(x) + σ(σ(x)) > y

must hold. Otherwise, the algorithm operates as before. We shall formally

prove the correctness of Algorithm 4.4 in the following theorem.

Theorem 4.12. For all positive integers m ≤ n and all nondecreasing func-

tions σ : Z+ → Z+, LexMin′σ(n,m) = Mσ(n,m).

Proof. Suppose σ : Z+ → Z+ is an arbitrary nondecreasing function, and

102

§ 4.4. Accelerated Algorithm

proceed by strong induction on n.

Base case: n = 1. Since 1 ≤ m ≤ n, we known that m = 1. Upon

entry, we assign x ← 1 and y ← 0. As the codomain of σ is Z+, the loop

entry condition on line 4 fails, as does the condition on line 10; therefore, we

proceed to line 15. We then assign a1 ← 1 + 0, and return the composition

〈1〉. Clearly Mσ(1, 1) = 〈1〉 and therefore LexMin′σ(1, 1) = Mσ(1, 1).

Induction step: Suppose, for some positive integer n, LexMin′σ(n′,m′) =

Mσ(n′,m′) for all positive integers m′ ≤ n′ < n. Consider the invocation

LexMin′σ(n,m), for an arbitrary positive integer m ≤ n.

Suppose m + σ(m) > n. Upon entry to the algorithm we assign x ← m

and y ← n −m, and so m + σ(m) > n ⇐⇒ σ(x) > y. Therefore, as the

codomain of σ is Z+, we shall proceed to line 15, assign a1 ← n, and return

〈n〉. By (4.2), Mσ(n,m) = 〈n〉, and hence LexMin′σ(n,m) = Mσ(n,m).

Suppose m + σ(m) ≤ n and m + σ(m) + σ(σ(m)) > n. Again, we

assign x ← m and y ← n − m and so m + σ(m) ≤ n ⇐⇒ σ(x) ≤
y and m + σ(m) + σ(σ(m)) > n ⇐⇒ σ(x) + σ(σ(x)) > y. Therefore

we proceed to line 11, assign a1 ← m and a2 ← n − m, and return the

composition 〈m〉〈n − m〉. By Lemma 4.4, Mσ(n,m) = 〈m〉〈n − m〉, and

therefore LexMin′σ(n,m) = Mσ(n,m).

Now, suppose that m+σ(m)+σ(σ(m)) ≤ n. In this case we will proceed

to line 5, and upon reaching line 8, the variables have the following states:

x = σ(m), y = n − m − σ(m) and k = 2. As we have a1 = m, we have

correctly assigned the initial part by (4.2) during the first iteration of the

loop: the remaining parts, i.e. the composition Mσ(n−m,σ(m)), must clearly

be assigned in the remaining iterations.

By the inductive hypothesis, LexMin′σ(n−m,σ(m)) = Mσ(n−m,σ(m)).

Therefore we must show that the variables x and y are in the same state im-

mediately after the first iteration of the loop in LexMin′σ(n,m) and imme-

diately before the first iteration of the loop in LexMin′σ(n−m,σ(m)). Upon

entry to LexMin′σ(n−m,σ(m)), we set x← σ(m) and y ← n−m− σ(m);

and these are the same values held by the corresponding variables after the

103

§ 4.4. Accelerated Algorithm

first iteration of the loop in LexMin′σ(n,m). Thus, by the inductive hypoth-

esis, LexMin′σ(n,m) = Mσ(n,m). Therefore, as m is an arbitrary positive

integer such that m ≤ n, LexMin′σ(n,m) = Mσ(n,m) for all m; hence

LexMin′σ(n,m) = Mσ(n,m) for all positive integers m ≤ n and all nonde-

creasing functions σ : Z+ → Z+.

LexMin′σ is, of course, no advantage if all we wish to do is compute

Mσ(n,m) as quickly as possible. It is, however, highly advantageous for

our application in this instance, as it identifies terminal and nonterminal

compositions. As this property is essential for our analysis of the resulting

generation algorithm, it is worthwhile formally proving this property; we do

so in the following lemma.

Lemma 4.5. For all positive integers m ≤ n and all nondecreasing functions

σ : Z+ → Z+, if the composition LexMin′σ(n,m) = a1 . . . ak is returned on

line 13 it is nonterminal. If a1 . . . ak is returned on line 16 it is terminal.

Proof. Suppose m ≤ n are arbitrary positive integers and suppose σ : Z+ →
Z+ is an arbitrary nondecreasing function. Let a1 . . . ak be the composition

returned by the invocation LexMin′σ(n,m). Suppose a1 . . . ak was returned

on line 13 of Algorithm 4.4. Then, ak−1 = x and ak = y; upon reaching line 10

we know that the condition σ(x)+σ(σ(x)) > y must hold true, and therefore

σ(ak−1) + σ(σ(ak−1)) > ak, and a1 . . . ak is by definition nonterminal.

Suppose, alternatively, that a1 . . . ak was returned on line 16 of Algo-

rithm 4.4. Then, by the argument above, a1 . . . ak must be terminal, as all

nonterminal compositions are returned on line 13.

We can now compute Mσ(n,m) and identify terminal and nonterminal

compositions, and so we can now proceed to the accelerated generation al-

gorithm itself. The algorithm, AccelGenσ (Algorithm 4.5), operates along

the principles outlined above. Unlike the direct implementation of the lexico-

graphic succession rule, however, there are some obvious differences between

the procedure to compute Mσ(n,m) and the corresponding section of the

generation algorithm. This difference arises in the while loop of lines 15–

20; instead of visiting the single nonterminal composition that arises from

104

§ 4.4. Accelerated Algorithm

Algorithm 4.5 AccelGenσ(n,m)

Require: 1 ≤ m ≤ n and σ : Z+ → Z+ is nondecreasing
1: k ← 2
2: a1 ← m− 1
3: a2 ← n−m+ 1
4: while k 6= 1 do
5: y ← ak − 1
6: k ← k − 1
7: x← ak + 1
8: while σ(x) + σ(σ(x)) ≤ y do
9: ak ← x

10: x← σ(x)
11: y ← y − x
12: k ← k + 1
13: end while
14: `← k + 1
15: while σ(x) ≤ y do
16: ak ← x
17: a` ← y
18: visit a1 . . . a`
19: x← x+ 1
20: y ← y − 1
21: end while
22: ak ← x+ y
23: visit a1 . . . ak
24: end while

computing Mσ(ak−1 + ak, ak−1) as we did in RuleGenσ we visit a sequence

of compositions. We do this using the succession rule for nonterminal com-

positions of Theorem 4.10. We know that the first composition visited by

this loop must be nonterminal, and we can keep applying the nonterminal

succession rule to this composition until we find that σ(x) > y. In this case

we visit the composition given in the second case of Theorem 4.10, and then

return to the head of the loop and repeat the process. The correctness of

AccelGenσ is proved in the following theorem.

Theorem 4.13. For every nondecreasing function σ : Z+ → Z+ and all

positive integers m ≤ n, AccelGenσ(n,m) generates the set Cσ(n,m) in

105

§ 4.4. Accelerated Algorithm

lexicographic order.

Proof. Suppose σ : Z+ → Z+ is an arbitrary nondecreasing function, and

suppose m ≤ n are arbitrary positive integers. We proceed by induction on

the rank r of the elements of Cσ(n,m).

Base case: r = 0. Upon initialisation of AccelGenσ(n,m) we enter

the main loop, and set x ← m, y ← n − m and k ← 1 before reaching

line 8. These values are identical to the values of the corresponding variables

in the invocation LexMin′σ(n,m) before reaching line 4 in that algorithm.

Comparing Algorithms 4.4 and 4.5, it is easy to verify that the first com-

position visited by AccelGenσ(n,m) is equal to the composition returned

by LexMin′σ(n,m). Therefore, by Theorem 4.12, the composition at rank

r = 0 is correctly visited.

Induction step: Suppose for some r ≤ Cσ(n,m)− 1 that the composition

a1 . . . ak has been visited by AccelGenσ(n,m). Let us examine the next

iteration of the main loop.

Suppose that r = Cσ(n,m) − 1. The lexicographically greatest element

of Cσ(n,m) is 〈n〉, and therefore k = 1. Thus, as there must be at least two

parts in all compositions visited on line 18, we know that this composition

must have been visited on line 23. Therefore, returning to line 4, we see that

the loop entry condition is false, and terminate. Therefore, if we have visited

the lexicographically last composition, we terminate correctly.

Suppose that r < Cσ(n,m) − 1, and let a1 . . . ak be the composition at

rank r. Suppose that a1 . . . ak has been visited on line 18. Before entering

the loop at line 15, the condition σ(x) + σ(σ(x)) > y must hold true. As σ

is nondecreasing, this property is invariant under any number of subsequent

increments to x and decrements to y, and so, as ak−1 = x and ak = y, a1 . . . ak

is nonterminal. Then, suppose that σ(ak−1 + 1) ≤ ak − 1. Clearly, we will

immediately visit the composition a1 . . . ak−2〈ak−1 + 1〉〈ak − 1〉, which, by

Theorem 4.10, is Sσ(a1 . . . ak). Suppose, on the other hand, that σ(ak−1+1) >

ak − 1. Then, also by Theorem 4.10, Sσ(a1 . . . ak) = a1 . . . ak−2〈ak−1 + ak〉,

106

§ 4.4. Accelerated Algorithm

which we will then visit on line 23. Therefore, if a1 . . . ak is visited on line 18,

then Sσ(a1 . . . ak) is visited immediately after.

Suppose a1 . . . ak has been visited on line 23. Then, by the analogy

with Algorithm 4.4, we know that the next composition visited must be

a1 . . . ak−2Mσ(ak−1 + ak, ak−1 + 1), and therefore we correctly visit the com-

position at rank r + 1 by the generic lexicographic succession rule.

Therefore, AccelGenσ(n,m) visits all elements of Cσ(n,m) in lexico-

graphic order. Hence, the algorithm correctly generates the set Cσ(n,m) for

any nondecreasing function σ : Z+ → Z+ and all positive integers m ≤ n.

Thus, AccelGenσ correctly generates all interpart restricted composi-

tions of n for any nondecreasing function σ : Z+ → Z+. We shall evaluate

the effectiveness of our modifications to RuleGenσ in the next section.

4.4.3 Analysis

In our analysis we wish to determine the total number of read and write oper-

ations [Kem98] incurred in generating the set Cσ(n,m), for some nondecreas-

ing restriction function σ : Z+ → Z+, using AccelGenσ (Algorithm 4.5).

The key to this analysis is the variable k: it controls termination of the

algorithm, and it is updated only via increment and decrement operations.

We can therefore infer the total number of iterations of each of the loops by

reasoning about the number of increments and decrements performed on k.

Before we can do this, we must determine the number of compositions visited

in the inner loop. Thus, letting t18(n,m) be the number of times line 18 is

executed in the process of generating the set Cσ(n,m) using AccelGenσ,

we get the following lemma.

Lemma 4.6. The number of times line 18 is executed during the execution

of Algorithm 4.5 is given by t18(n,m) = Nσ(n,m).

Proof. By Lemma 4.5 and the analogy between Algorithm 4.4 and Algo-

rithm 4.5 we know that the composition visited on line 18 during the first

iteration of the while loop must be nonterminal. Furthermore, we know that

107

§ 4.4. Accelerated Algorithm

compositions visited during subsequent iterations of this loop must be non-

terminal since, because σ is nondecreasing, the condition σ(x) +σ(σ(x)) > y

is invariant under any number of subsequent increments to x and decre-

ments to y. Then, by Lemma 4.5 we know that all compositions visited on

line 23 must be terminal, and so all nonterminal compositions must be vis-

ited on line 18. Therefore, line 18 is executed exactly Nσ(n,m) times and so

t18(n,m) = Nσ(n,m), as required.

Lemma 4.6 shows us that all nonterminal interpart restricted composi-

tions in Cσ(n,m) are visited on line 18, and therefore the terminal composi-

tions must be visited on line 23. From this information we can determine the

number of decrement operations on k, and hence the number of increments.

Thus, letting t6(n,m) and t12(n,m) be the number of times lines 6 and 12

are executed, respectively, during the execution of AccelGenσ(n,m), we

get the following lemmas.

Lemma 4.7. The number of times line 6 is executed during the execution of

Algorithm 4.5 is given by t6(n,m) = Tσ(n,m).

Proof. By Lemma 4.6 we know that Nσ(n,m) compositions from the set

Cσ(n,m) are visited on line 18. By Theorem 4.13, Algorithm 4.5 correctly

visits all Cσ(n,m) interpart restricted compositions in Cσ(n,m), and so the

remaining Cσ(n,m)−Nσ(n,m) = Tσ(n,m) compositions must be visited on

line 23. Thus, line 23 is executed Tσ(n,m) times, and by Kirchhoff’s Law,

line 6 is executed an equal number of times. Therefore, t6(n,m) = Tσ(n,m),

as required.

Lemma 4.8. The number of times line 12 is executed during the execution

of Algorithm 4.5 is given by t12(n,m) = Tσ(n,m)− 1.

Proof. Algorithm 4.5 begins with k = 2 and terminates when k = 1, and k

is modified only on lines 6 and 12. The statement k ← k − 1 is executed

Tσ(n,m) times by Lemma 4.7; therefore, the statement k ← k + 1 (line 12)

must be executed Tσ(n,m)−1 times. Therefore, t12(n,m) = Tσ(n,m)−1

Using Lemmas 4.6, 4.7 and 4.8 we can now determine the exact number

of read and write operations performed during the complete execution of

108

§ 4.4. Accelerated Algorithm

the AccelGenσ(n,m). Letting RA4.5(n,m) and WA4.5(n,m) be the total

number of reads and writes, respectively, performed by AccelGenσ in the

process of generating Cσ(n,m), we get the following theorems.

Theorem 4.14. Algorithm 4.5 requires RA4.5(n,m) = 2Tσ(n,m) read oper-

ations to generate the set Cσ(n,m).

Proof. Read operations are performed on lines 5 and 7. By Lemma 4.7 we

know that these statements are executed Tσ(n,m) times each, and so we get

a total of 2Tσ(n,m) read operations. Therefore, RA4.5(n,m) = 2Tσ(n,m), as

required.

Theorem 4.15. Algorithm 4.5 requires WA4.5(n,m) = 2Cσ(n,m) − 1 write

operations to generate the set Cσ(n,m), excluding initialisation.

Proof. Write operations are performed on lines 9, 16, 17 and 22 of Algo-

rithm 4.5. By Lemma 4.8 line 9 is executed Tσ(n,m)− 1 times; Lemma 4.6

demonstrates that lines 16 and 17 are executed Nσ(n,m) times each; and

by Lemma 4.7 line 22 is executed Tσ(n,m) times. Thus, summing these in-

dividual contributions we get WA4.5(n,m) = 2Tσ(n,m) + 2Nσ(n,m) − 1 =

2Cσ(n,m)− 1.

Having completed our analysis of AccelGenσ, we complete our devel-

opment of lexicographic generation algorithms for interpart restricted com-

positions. In this section, by identifying a special case in the lexicographic

succession rule for interpart restricted compositions we developed an accel-

erated algorithm to generate all interpart restricted compositions. We have

now analysed this algorithm, and so we are in a position to compare our basic

and accelerated algorithms for generating interpart restricted compositions.

This is the purpose of the next subsection.

4.4.4 Comparison

In this section we have developed an ‘accelerated’ algorithm to generate in-

terpart restricted compositions, AccelGenσ. It is not clear whether this

109

§ 4.4. Accelerated Algorithm

algorithm is actually more efficient than RuleGenσ, which is, after all, con-

stant amortised time. We shall examine these algorithms from a theoretical

and empirical perspective in this subsection.

Considering RuleGenσ (Algorithm 4.3) first, we derived the following

totals for the number of read and write operations required.

RA4.3(n,m) = 2Cσ(n,m) and WA4.3(n,m) = 2Cσ(n,m)− 1 (4.4)

Therefore, using RuleGenσ we can generate all Cσ(n,m) elements of the

set Cσ(n,m) using 2Cσ(n,m) read and 2Cσ(n,m)−1 write operations. Then,

considering the accelerated algorithm, AccelGenσ (Algorithm 4.5), we de-

rived the following totals for the number read and write operations.

RA4.5(n,m) = 2Tσ(n,m) and WA4.5(n,m) = 2Cσ(n,m)− 1 (4.5)

From the perspective of the number of read and write operations involved, the

only difference between the algorithms is that RuleGenσ requires 2Cσ(n,m)

reads whereas AccelGenσ requires 2Tσ(n,m). Clearly, the difference be-

tween the algorithms, if any, is entirely dependent on the relationship be-

tween the number of terminal compositions, Tσ(n,m), and the total number

of interpart restricted compositions, Cσ(n,m).

As we have previously noted, there does not appear to be any simple

general relationship between Tσ(n,m) and Cσ(n,m). For some particular

cases, such as when σ(x) = 1, the relationship is obvious. In general, however,

the relationship between these numbers does not appear to follow any simple

pattern. Thus, having been unable to derive a general relationship between

Cσ(n,m) and Tσ(n,m), we shall have to satisfy ourselves with some numerical

data.

In Table 4.2 we see the numbers of terminal and nonterminal compositions

for n = 10, 100, 1000 for several restriction functions. We can see from these

data that the maximum fraction of terminal compositions in the set Cσ(n)

is 0.5, and this occurs for the unrestricted compositions of n. For other

restriction functions this fraction is much smaller, the extreme example being

110

§ 4.4. Accelerated Algorithm

σ(x) n Cσ(n) Tσ(n) Nσ(n) Tσ(n)/Cσ(n)

1 10 512 256 256 0.5000
100 6.34× 1029 3.17× 1029 3.17× 1029 0.5000
1000 5.36× 10300 2.68× 10300 2.68× 10300 0.5000

2 10 55 21 34 0.3818
100 3.54× 1020 1.35× 1020 2.19× 1020 0.3820
1000 4.35× 10208 1.66× 10208 2.69× 10208 0.3820

x 10 42 20 22 0.4762
100 1.91× 1008 4.04× 1007 1.50× 1008 0.2118
1000 2.41× 1031 1.83× 1030 2.22× 1031 0.0761

x+ 1 10 10 4 6 0.4000
100 444793 68537 376256 0.1541
1000 8.64× 1021 4.69× 1020 8.17× 1021 0.0544

2x 10 6 2 4 0.3333
100 1189 116 1073 0.0976
1000 4.42× 1007 769343 4.34× 1007 0.0174

Table 4.2: Number terminal and nonterminal interpart restricted composi-
tions of n for several restriction functions. For each value of n and σ the
proportion of the compositions in Cσ(n) that are terminal is also shown.

when σ(x) = 2x. Putting these data back into the context of our generation

algorithm, since the relative durations of the algorithms is inextricably tied

to the fraction of terminal compositions in the set Cσ(n), we should expect

to see, not a constant difference between the algorithms, but one that varies

widely. The accelerated algorithm should always require less time than the

direct succession rule algorithm, but this difference will vary depending on

the restriction function.

Empirical Evaluation

We have predicted theoretically that the accelerated algorithm developed in

this section (AccelGenσ) should be significantly more efficient than the suc-

cession rule based algorithm developed in the previous section (RuleGenσ).

111

§ 4.4. Accelerated Algorithm

We shall now perform an empirical analysis of these algorithms, to determine

whether our theory reflects practice on an actual computer. Before we begin

our comparison, we shall first deal with the necessary methodological issues.

Theoretical analyses are subject to pitfalls associated with the innate

simplification of the problem which is required [Knu73], but empirical com-

parisons are also prone to leading to false conclusions. In the context of

his comparison of permutation generation algorithms [Sed77], Sedgewick has

noted that “many misleading conclusions have been drawn and reported in

the literature based on empirical performance statistics comparing partic-

ular implementations of particular algorithms.” Sedgewick then goes on to

remark that, in many comparisons of permutation generation methods, “the

empirical tests which have been performed have really been comparisons of

compilers, programmers and computers, not algorithms.”

Sedgewick’s concerns are pertinent, and we alleviate the three factors he

identifies (namely, the compilers, programmers and computers involved) by

taking the following steps in all of the experiments we conduct in this dis-

sertation. The issue of comparing programmers is mitigated by using literal

and unmeliorated implementations of the algorithm listings involved. That

is, in the high level languages used we implement the algorithms literally and

exactly as given. Any programmer given the algorithm listings can then im-

plement the algorithms exactly as provided, and reproduce the experiments.

Certain improvements can be made to all of the algorithms, such as using

pointers to refer to array elements in the C implementations, but such im-

provements tend to apply equally to all implementations, and thus cancel

out. It is not practical to exhaustively compare the algorithms piecewise

with all conceivable implementation improvements applied to each; even by

taking this step there would surely be some further improvement to be made.

The most we can hope to provide with our empirical comparison is to pro-

vide an assurance of likelihood : given the theoretical and empirical evidence

presented, it seems likely that a certain conclusion can be drawn, with a

reasonable degree of confidence in its validity.

We address Sedgewick’s assertion that empirical comparisons are often

comparisons of compilers and computers by taking two steps, both of which

112

§ 4.4. Accelerated Algorithm

are intimately related to addressing Sedgewick’s criticisms. Firstly, com-

pilation is performed in the simplest feasible manner by disabling all ex-

tra compiler ‘optimisations’. We can then hope that it is the algorithms

themselves compared and not the implementation’s suitability for compiler

meliorations. Secondly, in an attempt to alleviate the problems caused by

performing experiments on a single computer, we compare implementations

of the algorithms in the C and Java languages. (Other languages such as

Python and Haskell were also considered. The programs written in these

languages, however, were unable to generate numbers of partitions of the

orders of magnitude appropriate for C and Java in a feasible amount of time.

If the numbers of partitions generated in experiments were reduced to values

suitable for Python or Haskell, the amount of time required by the C and

Java implementations would be far too brief to measure accurately.) We

should, in this way, get a good indication of the computational properties of

the algorithms involved on any reasonable computer. Specifically, all exper-

iments in this dissertation we performed on the following platforms. The C

programs were compiled using GCC version 3.3.4 (with compiler ‘optimisa-

tions’ turned off), and the Java programs compiled and run on the Java
TM

2 Standard Edition, version 1.4.2. All programs were executed on an Intel R©

Pentium R© 4 processor running Linux kernel 2.6.8.

In each case the total amount of time required to generate the set of

compositions in question was measured. In the case of C it was possible to

measure the ‘user time’, or the total processor time the process used in exe-

cuting instructions of its program, using the times function. When measur-

ing the time required to generate compositions using the Java programming

language, it was necessary to measure the ‘wall clock’ time, or the amount

of time which elapsed from the initiation of the generation algorithm and its

completion. In either case each experiment was repeated five times, and the

minimum value from these five runs recorded. (The minimum rather than

the average is appropriate here as the algorithms require a fixed number of

instructions to run. Thus the minimum is the value least affected by other

processes running on the processor, and represents the closest approximation

to the actual time spent executing the algorithm.)

113

§ 4.4. Accelerated Algorithm

The precise time required for each experiment is of little interest to us

here. We wish, instead, to ascertain whether our theoretical models for the

runtime of each algorithm are accurate representations of actual implemen-

tations of the algorithms. Thus we report the amount of time required to

generate a given set of compositions using the improved algorithm divided by

the time required by the succession rule based algorithm. In this way we can

determine the difference in running times between the two algorithms, under

a given implementation. We also report the predicted ratio of the running

times under the total read-write operation model discussed in the previous

subsection. In this case we simply added the total number of read and write

operations incurred for each algorithm (hence assuming that the cost or a

read operation is equal to the cost of a write operation), and reported the

computed ratio between the two algorithms.

Returning to the particular experiments we are interested in for this sec-

tion, we implemented both algorithms in the C and Java languages, as dis-

cussed above. For each value of the restriction function we implemented a

separate algorithm with the appropriate value for σ(x) substituted into the

algorithm listings. Direct implementations of RuleGenσ and AccelGenσ

were used. A representative set of restriction functions were used for the

experiment. These include the restriction functions to describe the unre-

stricted compositions, the unrestricted partitions and the partitions into dis-

tinct parts. For each restriction function values of n were chosen such that n

is the smallest integer where Cσ(n) > 1× 10x and Cσ(n) > 5× 10x for x = 7

and x = 8. In this way we can compare the algorithms on different instances

of the restriction function while generating ‘realistic’ numbers of composi-

tions. The numbers of compositions generated simply reflect the power of

the computer used in the experiments. The upper bound, 5× 108, is chosen

such that the overall experiment can be run in a reasonable amount of time

and the lower bound chosen such that the amount of time required can be

measured with some degree of accuracy. (The total amount of time required

to run all of the experiments in this dissertation on the machine in question

is approximately ten hours.)

The results of these experiments are shown in Table 4.3. We can see that

114

§ 4.4. Accelerated Algorithm

σ(x) n Cσ(n) Java C Theoretical

1 25 1.68× 107 0.54 0.66 0.75
27 6.71× 107 0.54 0.69 0.75
28 1.34× 108 0.54 0.69 0.75
30 5.37× 108 0.55 0.69 0.75

2 36 1.49× 107 0.54 0.63 0.69
39 6.32× 107 0.55 0.64 0.69
40 1.02× 108 0.55 0.64 0.69
44 7.01× 108 0.55 0.64 0.69

x 77 1.06× 107 0.44 0.63 0.62
90 5.66× 107 0.43 0.64 0.61
95 1.05× 108 0.43 0.62 0.61
109 5.42× 108 0.42 0.63 0.60

x+ 1 141 1.03× 107 0.33 0.50 0.57
164 5.00× 107 0.31 0.48 0.56
175 1.03× 108 0.30 0.47 0.56
201 5.17× 108 0.30 0.46 0.56

x+ 2 177 1.03× 107 0.33 0.52 0.55
206 5.06× 107 0.31 0.50 0.55
220 1.05× 108 0.31 0.49 0.55
252 5.15× 108 0.30 0.48 0.55

2x 771 1.00× 107 0.22 0.41 0.51
1022 5.02× 107 0.21 0.40 0.51
1148 1.00× 108 0.21 0.40 0.51
1491 5.01× 108 0.21 0.39 0.51

Table 4.3: A comparison of the rule-based and accelerated algorithms to
generate interpart restricted compositions.

in all cases, for all values of n and all values of the restriction function, the

accelerated algorithm is significantly more efficient. The difference is quite

extreme when σ(x) = 2x, as is to be expected. The theoretically derived

ratio of the two algorithms, computed by counting the total read and write

operations for the two algorithms as per our analyses, is also shown. We can

see that this ratio consistently overestimates the ratio, and this is also to be

expected. In our theoretical predictions, we specifically assume that the costs

115

§ 4.5. Summary

of read and write operations are equal. One of the effects of the accelerated

algorithm, however, is to significantly reduce the cost of a write operation.

Thus, a write operation will cost less on average in the accelerated algorithm

than in the rule-based algorithm, and therefore a direct comparison based on

these counts will not take this property into account.

4.5 Summary

In this chapter we have developed efficient algorithms to generate interpart

restricted compositions of n for any nondecreasing restriction function. We

have developed a simple recursive algorithm that can be trivially shown to

have the constant amortised time property. We then developed an abstract

succession rule for interpart restricted compositions, a rule that transforms

any given composition into its immediate lexicographic successor. We then

implemented this rule as a generation algorithm, and proved that it also has

the constant amortised time property by counting the number of read and

write operations (on the compositions themselves) incurred by the algorithm

in generating all interpart restricted compositions of n. We also briefly exam-

ined some commensurable algorithms from the literature, and demonstrated

that this direct implementation of our succession rule is at least competitive

with the algorithms from the literature to generate specific subsets of the

interpart restricted compositions. We then developed a means of improving

the efficiency of this algorithm by introducing the theory of ‘terminal’ and

‘nonterminal’ compositions. This auxiliary theory allowed us to find effi-

ciently implementable special cases in the general succession rule. Empirical

observation demonstrates that these special cases are quite successful: our

accelerated algorithm is strictly more efficient than the direct implementa-

tion of the succession rule, and can lead to large improvements in efficiency

in certain instances.

116

Chapter 5

Generating All Partitions

A fundamental choice that must be made in developing any combinatorial

generation algorithm is that of the encoding we use to represent the objects of

interest. Using a poor encoding will inevitably lead to inefficient generation

algorithms. All existing partition generation techniques implicitly encode

partitions as descending compositions; in this chapter we investigate the

alternative of encoding partitions as ascending compositions. Fundamentally,

then, we are comparing algorithms to generate ascending and descending

compositions; we demonstrate that ascending compositions can be generated

more efficiently, and are therefore a more appropriate encoding for partitions.

The chapter proceeds as follows. In Section 5.1 we discuss notational

conventions and the methodology adopted in our analyses. Section 5.2 then

begins the comparison of ascending and descending composition generation

methods by directly comparing two recursive algorithms. Section 5.3 makes

a more abstract comparison of ascending and descending composition gen-

eration by comparing the relevant succession rules, and analysing the total

computational cost implied by a direct implementation of these rules. In

Section 5.4 we compare the most efficient known algorithms to generate as-

cending and descending compositions, from both a theoretical complexity

and practical efficiency point of view. We then conclude the chapter in Sec-

tion 5.5 by reviewing the evidence assembled in the chapter, and drawing our

conclusions based on this.

117

§ 5.1. Preliminaries

5.1 Preliminaries

The differences between ascending and descending compositions can be rather

subtle, and so we require some carefully chosen notation to maintain clarity.

Mainly, we distinguish between quantities referring to ascending and descend-

ing compositions by using either an upper or lowercase ‘a’ or ‘d’ in the obvious

way. For instance, whenever we use the notation d1 . . . dk it is understood

that we are referring to a sequence in which the parts are in descending order.

It is useful to have formal definitions of the concepts involved, and we shall

begin by defining precisely what is meant by an ‘ascending composition,’ and

develop some notation in terms of these objects.

Definition 5.1 (Ascending Composition). A sequence of positive integers

a1 . . . ak is an ascending composition of the positive integer n if a1+· · ·+ak =

n and a1 ≤ · · · ≤ ak.

Using this definition we can now define some useful notation that allows

us to discuss sets of ascending compositions and the cardinalities of those

sets (i.e. enumeration functions).

Definition 5.2 (Set and Enumeration Functions). Let A(n) be the set of

all ascending compositions of n for some n ≥ 1, and let A(n,m) ⊆ A(n)

be defined for 1 ≤ m ≤ n as A(n,m) = {a1 . . . ak | a1 . . . ak ∈ A(n) and

a1 ≥ m}. Also, let A(n) = |A(n)| and A(n,m) = |A(n,m)|.

Thus, the set A(n) contains all ascending compositions of n and the set

A(n,m) contains all ascending compositions of n where the first part is at

least m. As an example, consider the set of ascending compositions of 5:

A(5) = {11111, 1112, 113, 122, 14, 23, 5}. (5.1)

As A(n,m) is the set of all ascending compositions where the first part ≥ m,

we see that A(5, 1) = A(5), as all ascending compositions of n have first part

at least 1. Then, we see from the example above that A(5, 2) = {23, 5}, and

furthermore, that A(5, 3) = A(5, 4) = A(5, 5) = {5}. Thus, to continue the

118

§ 5.1. Preliminaries

example with the enumeration functions, we see that A(5) = A(5, 1) = 7,

A(5, 2) = 2 and A(5, 3) = A(5, 4) = A(5, 5) = 1.

As we are comparing algorithms to generate ascending compositions with

existing algorithms to generate descending compositions we shall also define

some similar functions in terms of descending compositions, although with

some subtle and important differences.

Definition 5.3 (Descending Composition). A sequence of positive integers

d1 . . . dk is a descending composition of the positive integer n if d1+· · ·+dk =

n and d1 ≥ · · · ≥ dk.

Analogous to Definition 5.1, a descending composition is any sequence of

positive integers whose sum is n where the sequence elements are arranged

in descending order. Again, we shall now define some set and enumeration

functions in terms of these objects.

Definition 5.4 (Set and Enumeration Functions). Let D(n) be the set of

all descending compositions of n for some n ≥ 1, and let D∗(n,m) ⊆ D(n)

be defined for 1 ≤ m ≤ n as D∗(n,m) = {d1 . . . dk | d1 . . . dk ∈ D(n) and

d1 = m}. Also, let D(n) = |D(n)| and D∗(n) = |D∗(n,m)|.

The set D(n) contains all descending compositions of n; as an example,

consider the set D(5):

D(5) = {11111, 2111, 221, 311, 32, 41, 5}. (5.2)

Considering the examples of (5.1) and (5.2) it is easy to see that there is a

one-to-one correspondence between the set A(n) and D(n), and so we easily

have A(n) = D(n) for all n ≥ 1. There is, however, an unfortunate asymme-

try between the two parameter recurrences used for ascending and descending

compositions, which we have attempted to highlight using the notation1. The

function D∗(n,m) is defined as the set of descending compositions where the

first part is exactly m (as opposed to the function A(n,m) which computes

1We require enumeration functions of this type for our analysis of Ruskey’s algo-
rithm [Rus01, §4.8] in Section 5.2.2

119

§ 5.1. Preliminaries

the set of ascending compositions of n where the first part is at least m).

Thus, to take examples from (5.2) above, we see that D∗(5, 1) = {11111},
D∗(5, 2) = {2111, 221}, D∗(5, 3) = {311, 32}, and so on. Correspondingly,

the enumeration function D∗(n,m) returns the cardinality of these sets, and

so we have D∗(5, 1) = 1, D∗(5, 2) = 2, D∗(5, 3) = 2, etc. As the function

D∗(n,m) computes the total number of descending compositions where the

first part is exactly m we can express the total number of descending com-

positions by summing over all possible values for the first part. Thus, we get

the equation D(n) =
∑n

m=1D
∗(n,m).

Although ascending and descending compositions are in one-to-one cor-

respondence, there is at least one notable difference in the computational

techniques defined in terms of the two classes of composition. In the func-

tions A(n,m) and D∗(n,m) we have defined above we restrict the value of

the first part. Since the parts are arranged in ascending and descending or-

der, respectively, we are effectively restricted the value of the smallest part

in ascending compositions and the largest part in descending compositions.

This difference is most noticeable in the recursive algorithms we shall study

in Section 5.2.

Both ascending and descending compositions are in correspondence with

another class of combinatorial object, the partitions of n. A partition of a

positive integer n is defined as any unordered collection of positive integers

whose sum is n. Then, since there is a unique way of writing any unordered

collection in either ascending or descending order, there are one-to-one cor-

respondences between the ascending compositions, descending compositions

and the partitions of n. The function p(n) is conventionally used to de-

note the number of partitions of n [And76, p.1]; thus, we can see that

p(n) = A(n) = D(n). In our analyses of the algorithms we investigate in

this chapter our ultimate goal will be to express the quantities of interest in

terms of the function p(n), about which much is known. Thus, once we have

a quantity which may be expressed in terms of p(n) we shall immediately do

so.

Various other notations shall be utilised in the progress of this chapter.

All of these notations are either well known or simple extensions of the nota-

120

§ 5.2. Recursive Algorithms

tions used in previous chapters, and so we shall not unnecessarily complicate

this discussion by introducing them all here.

5.2 Recursive Algorithms

In this section we examine recursive algorithms to generate ascending and

descending compositions. Recursion is a popular technique in combinatorial

generation as it leads to elegant and concise generation procedures [Rus01].

In Section 5.2.1 we instantiate our recursive interpart restricted composition

generator from Section 4.2, and analyse the resulting algorithm. Then, in

Section 5.2.2 we study Ruskey’s descending composition generator [Rus01,

§4.8], and provide a new analysis of this algorithm. We compare these algo-

rithms in Section 5.2.3 in terms of the total number of recursive invocations

required to generate all p(n) partitions of n.

5.2.1 Ascending Compositions

In Section 4.2 we developed a recursive algorithm to generate interpart re-

stricted compositions, RecGenσ. In this chapter we are interested in gener-

ating all unrestricted partitions of n, and by suitably instantiating RecGenσ

we easily obtain such an algorithm. In the interpart restricted compositions

framework (Chapter 3) we represent the unrestricted partitions using the

identity function. Therefore, by replacing all instance of σ(x) in RecGenσ

with x we obtain an ascending composition generator; the resulting algorithm

is RecAsc (Algorithm 5.1).

RecAsc(n,m, k) generates all ascending compositions of n where the

first part is at least m in lexicographic order; thus, invoking RecAsc(6, 2, 1)

will successively visit the compositions 222, 24, 33, 6. To generate all ascend-

ing compositions (and hence all partitions) of a positive integer n we invoke

RecAsc(n, 1, 1), as 1 is the minimum value for the first part. The parameter

k is used recursively to assign values into the correct index, and the initial

value represents the index of the first part in all of the compositions gener-

ated. We are assured of the correctness of the algorithm by Theorem 4.2,

121

§ 5.2. Recursive Algorithms

s1 = 1 ∅ ∅ ∅
O

s2 = 1 1 ∅ ∅
O

s3 = 1 1 1 ∅
O

s4 = 1 1 1 1
O

s5 = 1 1 2 1
O

s6 = 1 3 2 1
O

s7 = 2 3 2 1
O

s8 = 2 2 2 1
O

s9 = 4 2 2 1
O

Figure 5.1: Array state-transition diagram for the recursive ascending com-
position generation algorithm. Indices marked with the O symbol are the
indices in which a value is assigned to change the state of the array, and
array segments outlined in bold are the portions that are visited.

Algorithm 5.1 RecAsc(n,m, k)

Require: 1 ≤ m ≤ n
1: x← m
2: while 2x ≤ n do
3: ak ← x
4: RecAsc(n− x, x, k + 1)
5: x← x+ 1
6: end while
7: ak ← n
8: visit a1 . . . ak

where we verified the correctness of Algorithm 4.1 by an inductive argument.

The effect of the invocation RecAsc(4, 1, 1) is given in Figure 5.1, where

we see all states of the generation array the algorithm traverses in generating

the ascending compositions of 4. The state of the array changes each time we

make a write operation aj ← x on lines 3 or 7. Since filling the array a with

the appropriate values is the essence of generation, we can get an intuitive

grasp on how an algorithm operates by examining such diagrams.

After initialisation, the algorithm proceeds by filling the array with four

copies of 1; each of which is assigned in an invocation where the parameter

n is equal to 4, . . . , 1 and k = 1, . . . , 4. Once all of the 1s have been written,

execution falls back down through the recursion chain, we assign the values

of the parameter to n to ak, and visit the composition a1 . . . ak (states s4...6).

122

§ 5.2. Recursive Algorithms

State s7 arises when we return to the initial invocation of Algorithm 5.1,

where n = 4 and m = 1; in this invocation we increment x to 2, find that

2x ≤ n, and so recursively reinvoke the algorithm. We then arrive at state s8,

where we visit the composition 22, and return again to the initial invocation.

The variable x is then set to 3, but as 2x 6≤ n we do not reenter the loop and

so proceed to state s9 by assigning a1 = 4, visit the resulting composition,

and terminate.

Analysis

Following the standard practice for the analysis of recursive generation algo-

rithms, we count the number of recursive calls required to generate the set

of combinatorial objects in question [ER03, RECS94, NSST98, BS97, Boy05,

Saw01, Rus01]. By counting the total number of recursive invocations re-

quired, we obtain a bound on the total time required, as each invocation,

discounting the time spent in recursive calls, requires constant time. To es-

tablish that Algorithm 5.1 generates the set A(n) in constant amortised time

we must count the total number of invocations, and show that this value is

proportional to A(n). Although the relevant results are proved in the gen-

eral treatment of Section 4.2, the arguments are concise enough to reproduce.

Letting IA5.1(n) be the total number of invocations of Algorithm 5.1 required

to generate all ascending compositions of n, we obtain the following result.

Theorem 5.1. For all positive integers n, IA5.1(n) = p(n).

Proof. Each invocation of Algorithm 5.1 visits exactly one composition (line

8). By Theorem 4.2 the invocation RecAsc(n,m, 1) correctly visits all p(n)

ascending compositions of n; it immediately follows, therefore, that there

must be p(n) invocations. Hence, IA5.1(n) = p(n).

Theorem 5.1 gives us an asymptotic measure of the total computational

effort required to generate all partitions of n using Algorithm 5.1. It is

also useful, for the purposes of our comparative analysis, to know the aver-

age amount of effort that this total implies per partition. Therefore, we let

ĪA5.1(n) denote the average number of invocations of RecAsc required to

123

§ 5.2. Recursive Algorithms

generate an ascending composition of n. To determine this value we simply

have to divide the total number of invocations required to generate all parti-

tions by the number of partitions generated; that is, ĪA5.1(n) = IA5.1(n)/p(n).

The following corollary then follows easily from Theorem 5.1.

Corollary 5.1. For all positive integers n, ĪA5.1(n) = 1.

Proof. By Theorem 5.1, we know that IA5.1(n) = p(n). As ĪA5.1(n) =

IA5.1(n)/p(n), we then immediately have ĪA5.1(n) = 1.

Although the result follows trivially from Corollary 5.1, it is useful to for-

mally prove that Algorithm 5.1 generates ascending compositions in constant

amortised time. Recall that a generation algorithm is constant amortised

time if the average computational effort per object generated is bounded,

from above, by some constant. We then immediately have the following

result.

Corollary 5.2. Algorithm 5.1 is constant amortised time.

Proof. By Corollary 5.1 we know that the average number of invocations of

Algorithm 5.1 per composition generated is 1. Therefore, assuming the cost

of each invocation, excluding the cost of recursive invocations, is constant,

we see that the average computational effort per composition generated is

constant.

We now have sufficient information to compare RecAsc with existing

recursive descending composition generators. In the next subsection we

study the most efficient known example of such an algorithm. Then, in

Section 5.2.3, we compare recursive algorithms to generate ascending and

descending compositions, and conclude this section on the recursive genera-

tion of all partitions.

5.2.2 Descending Compositions

The problem of generating all partitions has long been synonymous with

the problem of generating all descending compositions, and there is a range

124

§ 5.2. Recursive Algorithms

of algorithms available to solve the latter problem — see Table 2.2 (p.35).

Essentially, two recursive algorithms are available: Page & Wilson’s [PW79,

§5.5] generator and Ruskey’s improvement thereof [Rus01, §4.8]. Page &

Wilson’s algorithm is not constant amortised time (i.e. the total number

of invocations required to generate all partitions divided by the number of

partitions generated is not bounded, from above, by a constant) [Rus01, §4.8],

but is nevertheless cited in certain texts as the preferred means of generating

all partitions — see Kreher & Stinson [KS98, p.68] or Skiena [Ski90, p.51].

Ruskey’s algorithm improves on Page & Wilson’s basic technique to obtain

constant amortised time performance, and we shall therefore study Ruskey’s

algorithm in detail in order to compare it with the algorithm presented in

the previous subsection.

Ruskey’s algorithm, given in Algorithm 5.2, generates all descending com-

positions of n in which the first (and largest) part is exactly m. Thus the

invocation RecDesc(8, 4, 1) visits the compositions 41111, 4211, 422, 431, 44,

which are in lexicographic order. RecDesc uses what Ruskey refers to as a

‘path elimination technique’ [Rus01, §4.3] to attain constant amortised time

performance.

Path elimination techniques are required when recursion passes through

parameter paths that do not terminate in a valid object, and so we must

trace back up along the call chain. Path elimination techniques remove the

necessity to backtrack by predicting ‘dead-ends’ and taking action to prevent

them occurring. Ruskey suggests two general methods to avoid unfruitful

recursion chains. The first technique is obtained by observing that chains

of recursive calls are sometimes caused by parameters reaching boundary

conditions; by initialising the array to hold the values of the string occurring

at the boundary conditions in question we can avoid the chains required to

assign these values. If we restore these values after recursion backs up, we

can avoid all chains resulting from the boundary condition in question. The

second technique suggested by Ruskey is to halt recursion some number of

steps before reaching a terminal node, and to use some simpler procedure to

fill in the required values. For more information, and further applications of

these techniques, see Ruskey [Rus01].

125

§ 5.2. Recursive Algorithms

Algorithm 5.2 RecDesc(n,m, k) [Rus01, §4.8]

Require: 1 ≤ m ≤ n and dj = 1 for j > k
1: dk ← m
2: if n = m or m = 1 then
3: visit d1 . . . dk+n−m
4: else
5: for x← 1 to min(m,n−m) do
6: RecDesc(n−m,x, k + 1)
7: end for
8: dk ← 1
9: end if

RecDesc uses a path elimination technique of the first type to attain

constant amortised time performance. If m = 1 we know that the compo-

sition in question must consist of n copies of the value 1. By initialising

the array d to hold n copies of 1 (and by resetting array values to 1 after

recursion backs up — see line 8) we can avoid the recursive calls required to

assign n copies of 1 into the array.

Another slight complication arises when we wish to use RecDesc to gen-

erate all descending compositions. As the algorithm generates all descending

compositions where the first part is exactly m, we must iterate through all

j ∈ {1, . . . , n} and invoke RecDesc(n, j, 1). Following Ruskey’s recom-

mendations, and for the purposes of analysis, we shall consider instead the

invocation RecDesc(2n, n, 1). This invocation will generate all descending

compositions of 2n where the first part is exactly n; therefore the remaining

parts will be a descending composition of n. Thus, if we alter line 3 to ig-

nore the first part in a (i.e. visit a2 . . . ak+n−m), we will visit all descending

compositions of n in lexicographic order.

The sequence of array states traversed by RecDesc(8, 4, 1) is given in

Figure 5.2. We assume in this instance that the array has been initialised to

contain 5 copies of 1, and that the algorithm has been modified to visit values

from d2 onwards. The initial invocation of the algorithm assigns d1 ← 4 (we

invoke the algorithm with n = 8 and m = 4), moving the array from its

original state to s1. After this assignment, we enter the loop and invoke

RecDesc(4, 1, 2); here we assign d2 ← 1, and so bring the array into state

126

§ 5.2. Recursive Algorithms

s1 = 4 1 1 1 1
O

s2 = 4 1 1 1 1
O

s3 = 4 2 1 1 1
O

s4 = 4 2 1 1 1
O

s5 = 4 2 2 1 1
O

s6 = 4 1 2 1 1
O

s7 = 4 3 2 1 1
O

s8 = 4 3 1 1 1
O

s9 = 4 1 1 1 1
O

s10 = 4 4 1 1 1
O

s11 = 1 4 1 1 1
O

Figure 5.2: Array state-transition diagram for Ruskey’s algorithm. Indices
marked with the O symbol are the indices in which a value is assigned to
change the state of the array, and array segments outlined in bold are the
portions that are visited.

s2. Then, as m = 1, we visit the composition held in d2 . . . d5, and return

to the initial invocation. We then set x = 2, and reinvoke, bringing the

array into state s3. This process then continues until x = 4, where we assign

d2 ← 4, giving us state s10, from which we immediately visit d2. Then, as the

loop has finished iterating, we assign d1 ← 1 (giving us s11), and terminate.

Analysis

In Section 5.2.1 we proved that the total number of invocations of the as-

cending composition generator (RecAsc) required to generate all partitions

of n is p(n), which, because of the structure of the algorithm, was trivial

to derive. To compare the recursive generators for ascending and descend-

ing compositions we must also derive the number of invocations of Ruskey’s

algorithm required to generate all partitions. This analysis is, however, far

from trivial because the visit statement in RecDesc (Algorithm 5.2) is en-

closed in a conditional statement. Thus, we know that the visit statement is

executed p(n) times, and so there must be at least p(n) invocations; but we

do not know the total number of invocations. We use a recurrence relation

to enumerate the total invocations of RecDesc(n,m, 1) and then solve this

127

§ 5.2. Recursive Algorithms

recurrence in terms of the partition function, p(n).

Ruskey’s algorithm generates descending compositions where the largest

part is exactly m, and so we require a recurrence relation to count objects of

this type. Recall from Section 5.1 that the function D∗(n,m) counts the de-

scending compositions of n where the first part is exactly m; Ruskey [Rus01,

§4.8] provides a recurrence relation to compute D∗(n,m), which we shall use

for our analysis. Thus, we define D∗(n, n) = D∗(n, 1) = 1, and in general,

D∗(n,m) =

min(m,n−m)∑
x=1

D∗(n−m,x). (5.3)

Recurrence (5.3) is useful here because it is, in fact, the recurrence relation

upon which RecDesc is based. Developing a recurrence to count the number

of invocations of RecDesc required to generate the descending compositions

of n where the first part is exactly m, I ′A5.2(n,m), is then relatively simple.

Following Ruskey’s instructions [Rus01, §4.11], we obtain the recurrence to

describe the number of invocations by “adding +1 to each non-constant case”

of (5.3). Thus, we define I ′A5.2(n, n) = I ′A5.2(n, 1) = 1, and

I ′A5.2(n,m) = 1 +

min(m,n−m)∑
x=1

I ′A5.2(n−m,x). (5.4)

Recurrence (5.4) computes the number of invocations of Algorithm 5.2 re-

quired to generate all descending compositions of n with first part exactly m,

but tells us little about the actual magnitude of this value. As a step towards

solving this recurrence in terms of the partition function p(n) we require the

following lemma, in which we relate the I ′A5.2(n,m) numbers to the D∗(n,m)

numbers.

Lemma 5.1. If 1 < m ≤ n then I ′A5.2(n,m) = D∗(n,m) +D∗(n− 1,m).

Proof. Proceed by strong induction on n.

Base case: n = 2. Suppose 1 < m ≤ 2; it follows immediately that m = 2.

Thus, by recurrence (5.4) we compute I ′A5.2(2, 2) = 1 and by recurrence (5.3)

128

§ 5.2. Recursive Algorithms

compute D∗(2, 2) = 1 and D∗(1, 2) = 0. Therefore, I ′A5.2(2, 2) = D∗(2, 2) +

D∗(1, 2), and so the inductive basis holds.

Induction step: Suppose, for some positive integer n, that I ′A5.2(n
′,m′) =

D∗(n′,m′) + D∗(n′ − 1,m′) for all positive integers 1 < m′ ≤ n′ < n. Then,

suppose m is an arbitrary positive integer such that 1 < m ≤ n. Now,

suppose m = n. By (5.4) we know that I ′A5.2(n,m) = 1 since m = m. Also,

D∗(n,m) = 1 as m = n, and D∗(n − 1,m) = 0 as n − 1 6= m, m 6= 1 and

min(m,n−m−1) = −1, ensuring that the sum in (5.3) is empty. Therefore,

I ′A5.2(n,m) = D∗(n,m) +D∗(n− 1,m).

Suppose, on the other hand, that 1 < m < n. We can see immediately

that min(m,n−m) ≥ 1, and so there must be at least one term in the sum

of (5.4). Extracting this first term where x = 1 from (5.4) we get

I ′A5.2(n,m) = 1 + I ′A5.2(n−m, 1) +

min(m,n−m)∑
x=2

I ′A5.2(n−m,x),

and furthermore, as I ′A5.2(n, 1) = 1, we obtain

I ′A5.2(n,m) = 2 +

min(m,n−m)∑
x=2

I ′A5.2(n−m,x). (5.5)

We are assured that 1 < x ≤ n −m by the upper and lower bounds of the

summation in (5.5), and so we can apply the inductive hypothesis to get

I ′A5.2(n,m) = 2 +

min(m,n−m)∑
x=2

(D∗(n−m,x) +D∗(n−m− 1, x))

= 2 +

min(m,n−m)∑
x=2

D∗(n−m,x) +

min(m,n−m)∑
x=2

D∗(n−m− 1, x).

By the definition of D∗ we know that D∗(n, 1) = 1, and so D∗(n −m, 1) +

D∗(n−m−1, 1) = 2. Replacing the leading 2 above with this expression, and

inserting the terms D∗(n−m, 1) and D∗(n−m− 1, 1) into the appropriate

129

§ 5.2. Recursive Algorithms

summations we find that

I ′A5.2(n,m) =

min(m,n−m)∑
x=1

D∗(n−m,x) +

min(m,n−m)∑
x=1

D∗(n−m− 1, x) . (5.6)

By (5.3) we know that the first term of (5.6) is equal to the first term of

I ′A5.2(n,m) = D∗(n,m) +D∗(n− 1,m), it therefore remains to show that

D∗(n− 1,m) =

min(m,n−m)∑
x=1

D∗(n−m− 1, x),

or equivalently, that

min(m,n−m−1)∑
x=1

D∗(n−m− 1, x) =

min(m,n−m)∑
x=1

D∗(n−m− 1, x). (5.7)

Suppose m ≤ n−m−1. Then, min(m,n−m−1) = min(m,n−m), and so

the left and right-hand sides of (5.7) are equal. Suppose, alternatively, that

m > n−m−1. Hence, min(m,n−m−1) = n−m−1 and min(m,n−m) =

n−m and so we get

n−m∑
x=1

D∗(n−m− 1, x) =
n−m−1∑
x=1

D∗(n−m− 1, x) +D∗(n−m− 1, n−m).

Since n − m − 1 < n − m we know that D∗(n − m − 1, n − m) = 0, and

therefore (5.7) is verified.

Therefore, by (5.6) and (5.7) we know that I ′A5.2(n,m) = D∗(n,m) +

D∗(n− 1,m), as required.

Lemma 5.1 is a crucial step in our analysis of Algorithm 5.2 as it relates

the number of invocations required to generate a given set of descending com-

positions to the function D∗(n,m). Much is known about the D∗(n,m) num-

bers, as they count the partitions of n where the largest part is m; thus, we

can then relate the number of invocations required to the partition numbers,

p(n). Therefore, let us formally define IA5.2(n) to be number of invocations

of Algorithm 5.2 required to generate all p(n) descending compositions of n.

130

§ 5.2. Recursive Algorithms

We then get the following result.

Theorem 5.2. If n > 1 then IA5.2(n) = p(n) + p(n− 1).

Proof. Suppose n > 1. To generate all descending compositions of n we

invoke RecDesc(2n, n, 1) (see discussion above), and as n > 1 we can apply

Lemma 5.1, to obtain I ′A5.2(2n, n) = D∗(2n, n) + D∗(2n − 1, n), and thus

IA5.2(n) = D∗(2n, n) + D∗(2n − 1, n). We know that D∗(2n, n) = p(n),

as we can clearly obtain a descending composition of n from a descending

composition of 2n where the first part is exactly n by removing that first

part. Similarly, D∗(2n − 1, n) = p(n − 1), as we can remove the first part

of size n from any descending composition of 2n − 1 with first part equal

to n, obtaining a descending composition of n − 1. Thus, the descending

compositions counted by the functions D∗(2n, n) = p(n) and D∗(2n−1, n) =

p(n− 1). Hence, IA5.2(n) = p(n) + p(n− 1), completing the proof.

Note that in Theorem 5.2, and in many of the following analyses, we

restrict our attention to values n > 1. This is to avoid unnecessary compli-

cation of the relevant formulas in accounting for the case where n = 1. In

the above, if we compute IA5.2(n) = p(n) + p(n − 1) for n = 1, we arrive at

the conclusion that the number of invocations required is 2, as p(0) = 1 by

convention. In the interest of clarity we shall ignore such contingencies, as

they do not affect the general conclusions we shall draw.

We generate all partitions of n by invoking RecDesc(2n, n, 1). It is,

however, possible to generate all descending compositions of n by iterating

through all possible values x of the first part and invoking RecDesc(n, x, 1)

for each value. This approach, however, will save only one invocation, as

this is precisely what the invocation RecDesc(2n, n, 1) does, aside from

two redundant array writes. Thus, there is no real advantage to manually

iterating through the possible values for the first part; and, as we have seen

in Theorem 5.2, analysis of the algorithm is greatly facilitated by examining

the case of generating all descending compositions of 2n where the first part

is exactly n.

Using Theorem 5.2 it is now straightforward to show that RecDesc gen-

erates all descending compositions of n in constant amortised time. To show

131

§ 5.2. Recursive Algorithms

that the algorithm is constant amortised time we must demonstrate that

the average number of invocations of the algorithm per object generated is

bounded, from above, by some constant [ER03, RECS94, NSST98, BS97,

Boy05, Saw01, Rus01]. To do this, let us formally define ĪA5.2(n) as the av-

erage number of invocations of RecDesc required to generate a descending

composition of n. Clearly, as the total number of invocations is IA5.2(n) and

the number of objects generated is p(n), we have ĪA5.2(n) = IA5.2(n)/p(n).

We can then prove the following corollary of Theorem 5.2.

Corollary 5.3. Algorithm 5.2 is constant amortised time.

Proof. By definition ĪA5.2(n) = IA5.2(n)/p(n), and by Theorem 5.2 we know

that IA5.2(n) = p(n)+p(n−1), and so we have ĪA5.2(n) = 1+p(n)/p(n−1). It

is well known that p(n) > p(n−1) for all n > 1, and therefore p(n−1)/p(n) <

1. From this inequality we can then deduce that ĪA5.2(n) < 2, completing

the proof.

It is useful from the perspective of comparing the algorithms for gener-

ating descending and ascending compositions to get a qualitative idea of the

amount of work involved in generating descending and ascending composi-

tions. To facilitate this comparison, we derive an asymptotic expression for

the average number of invocations required to generate a descending compo-

sition using RecDesc, ĪA5.2(n).

Corollary 5.4. If n > 1 then

ĪA5.2(n) = 1 +
1 +O(n−1/6)

eπ/
√

6n
. (5.8)

Proof. From Theorem 5.2 and Corollary 5.3 we know that ĪA5.2(n) = 1+p(n−
1)/p(n). By the asymptotic estimate for p(n−t)/p(n) [Knu04c, p.11] we then

get ĪA5.2(n) = 1 + e−C/
√
n
(
1 +O(n−1/6)

)
, with C = π/

√
6. Simplifying this

expression we get ĪA5.2(n) = 1 + e−π/
√

6n
(
1 +O(n−1/6)

)
, as required.

Corollary 5.4 uses the asymptotic formulas for p(n) to allow us qualita-

tively assess the average amount of work Algorithm 5.2 does per partition

132

§ 5.2. Recursive Algorithms

generated. We can see from (5.8) that this quantity is 1 + e−π/
√

6n with rel-

ative error of O(n−1/6). We therefore know that ĪA5.2(n) will approach 2 as

n becomes large. This concludes our analysis of Ruskey’s algorithm.

In this subsection we have described and provided a new analysis for the

most efficient known recursive descending composition generation algorithm,

which is due to Ruskey [Rus01, §4.8]. Ruskey demonstrated that RecDesc

is constant amortised time by reasoning about the number of children each

node in the computation tree has, but does not derive the precise number

of invocations involved. In this section we rigorously counted the number of

invocations required to generate all descending compositions of n using this

algorithm, and related the recurrence involved to the partition numbers. We

then used an asymptotic formula for p(n) to derive the number of invocations

required to generate each partition, on average. In the next subsection we

use this analysis to compare Ruskey’s descending composition generator with

our new ascending composition generator.

5.2.3 Comparison

In this section we have studied examples of recursive generation algorithms

for ascending and descending compositions. The ascending composition gen-

erator, RecAsc, is a concrete implementation of the general recursive al-

gorithm we developed in the previous chapter. The algorithm to generate

descending compositions, RecDesc, is the most efficient known example of

such an algorithm, and due to Ruskey [Rus01, §4.8]. We analysed both of

these algorithms by counting the number of invocations of each algorithm

that is required to generate all partitions of n; as both algorithms require a

constant number of operations, discounting subsequent recursive invocations,

this provides us with a reasonable means of comparing the algorithms.

Performing this comparison is then a simple procedure. RecAsc requires

p(n) invocations to generate all p(n) partitions of n whereas RecDesc re-

quires p(n) + p(n− 1) invocations. The asymptotics of p(n) show that, as n

becomes large, p(n− 1)/p(n) approaches 1. Thus, we can reasonably expect

the descending composition generator to require approximately twice as long

133

§ 5.2. Recursive Algorithms

as the ascending composition generator to generate all partitions of n.

In Table 5.1 we see a comparison of the actual time spent in generating

partitions of n using two well known descending composition generators and

our ascending composition generator, Algorithm 5.1. In this table we report

the time spent by Algorithm 5.1 in generating all ascending compositions

of n, divided by the time required by the descending composition generator

in question. (We report these ratios as the actual durations are of little

interest). The ratios reported are for implementations in the Java and C

languages — see Section 4.4.4 for a description of the methodology adopted

in making these observations. The values of n are selected such that n is the

smallest integer where p(n) > 1 × 10x and p(n) > 5 × 10x for 6 ≤ x ≤ 8.

Orders of magnitude larger than these values proved to be infeasible on the

experimental platform; similarly, the time elapsed in generating fewer than

a million partitions was too brief to measure accurately.

The top rows of Table 5.1 report the total time required by Algorithm 5.1

to generate all partitions of n divided by the time required by Page & Wilson’s

algorithm [PW79, §5.5] to generate the same set of partitions. We can clearly

see a large disparity in the amount of time required to generate partitions of

n using these two algorithms: for instance, when generating all partitions of

109, Algorithm 5.1 requires only 11% and 15% of the time require by Page

& Wilson’s algorithm, in the C and Java implementations, respectively. It is

possible (using the same techniques as we used to analyse Ruskey’s algorithm)

to show that the number of invocations of Page & Wilson’s algorithm required

to generate all partitions of n is given by p(1) + · · ·+ p(n). The algorithm is

manifestly inefficient, and so we shall not consider it further.

Ruskey’s algorithm, as presented in Algorithm 5.2 and analysed in the

previous subsection, is the most efficient known recursive descending compo-

sition generator, and results of a similar empirical investigation are shown in

Table 5.1. Along with the observed ratios of the time required by RecAsc

and RecDesc we also report the theoretically predicted ratio of the running

times: p(n)/(p(n) + p(n− 1)). We can see from Table 5.1 that these theoret-

ically predicted ratios agree well with the empirical evidence. We can also

see that as n becomes larger, Ruskey’s algorithm is tending towards taking

134

§ 5.3. Succession Rules

n = 61 72 77 90 95 109
p(n) = 1.12×106 5.39×106 1.06×107 5.66×107 1.05×108 5.42×108

PW J 0.18 0.17 0.17 0.16 0.15 0.15
C 0.11 0.13 0.13 0.12 0.12 0.11

R J 0.56 0.56 0.56 0.55 0.55 0.55
C 0.40 0.48 0.49 0.50 0.50 0.50

Theoretical 0.54 0.54 0.53 0.53 0.53 0.53

Table 5.1: A comparison of recursive partition generators. The ratio of the
time required by our ascending composition generation algorithm and two
other well-known recursive generation algorithms in the Java and C languages
is shown.

twice as long as RecAsc to generate the same partitions.

5.3 Succession Rules

In the previous section we analysed and compared recursive algorithms to

generate all ascending and descending compositions. We found that the as-

cending composition generation method is significantly more efficient, despite

being rather simpler to analyse and implement. Recursive generation algo-

rithms are useful in some contexts, but there are compelling reasons for us to

consider more direct iterative solutions. Besides the obvious issue of outright

efficiency, iterative techniques are more flexible in how they may be adapted

for a particular task. In particular, iterative techniques are far more suitable

for the generator paradigm, where programming language constructs allow us

to transparently simulate an arbitrarily large data structure using a special

type of procedure (see Chapter 1).

In this section we consider algorithms of the form studied by Kemp,

in his general treatment of the problem of generating combinatorial ob-

jects [Kem98]. As we discussed in Section 2.1.3, Kemp reduced the problem

of generating combinatorial objects to the generation of all words in a for-

mal language L, and developed powerful general techniques to analyse such

algorithms. Specifically, Kemp studied “direct generation algorithms” that

135

§ 5.3. Succession Rules

obey a simple two step procedure: (1) scan the current word from right-to-

left until we find the end of the common prefix shared by the current word

and its immediate successor; and (2) attach the new suffix to the end of this

shared prefix. The cost of this process can be easily quantified by count-

ing the number of ‘read’ operations required in step (1), and the number of

‘write’ operations in step (2). To determine the complexity of generating a

given language, we can count the number of these operations incurred in the

process of generating all words in the language.

In this section we evaluate the complexity of generating all ascending

and descending compositions under these conditions. We consider only di-

rect generation algorithms where we scan the current object to find the last

part of the common prefix and write each element of the new suffix. It is

important to note that under this model we only count the operations that

operate on the compositions : we disregard all manipulations of auxiliary vari-

ables, in a deliberate attempt to determine the underlying inherent difficulty

of generating ascending and descending compositions. Thus, although our

analyses are based on particular algorithms, we are in fact analysing two

classes of algorithm; that is, the classes of direct succession rule generation

algorithm for ascending and descending compositions.

The section proceeds as follows. In Section 5.3.1 we examine a concrete

instantiation of the succession rule developed in the previous chapter for in-

terpart restricted compositions, and analyse the resulting algorithm. Then,

in Section 5.3.2 we repeat this analysis for the well-known lexicographic suc-

cession rule for descending compositions; finally, in Section 5.3.2 we compare

the average computational effort required per partition generated using both

algorithms.

5.3.1 Ascending Compositions

Generating all partitions of n is an important problem [Knu04c], and any

iterative solution to this problem must be based on some abstract succession

rule for the encoding utilised. Succession rules for descending compositions

are well-known, but, as the possibility of encoding partitions as ascending

136

§ 5.3. Succession Rules

compositions has not been previously considered, no such rule was previously

known for ascending compositions. In Section 4.1 we developed a simple

rule by which we can take any given interpart restricted composition and

transform it into its immediate lexicographic successor. This rule can be

used in its general form, using the relevant concrete instance of the restriction

function (see Chapter 3), to generate the successor of any given ascending

composition of n. But, given the importance of partition generation, we

shall fully develop a more specific rule for ascending compositions in this

subsection. Before we enter into our discussion of the lexicographic succession

rule, it is convenient to formally define the notation involved.

Definition 5.5 (Lexicographic Minimum). For some positive integers m ≤
n, the function MA(n,m) computes the lexicographically least element of the

set A(n,m).

Computing the lexicographically least element of an intensionally speci-

fied set of ascending compositions is essential for deriving the lexicographic

successor of a given ascending composition, as we shall see. The lexicograph-

ically least element of a set of ascending compositions is easily found. For

example, MA(10, 3) = 334, as we cannot have any ascending compositions

that lexicographically precede 334 inA(10, 3); the minimum value for the first

part is specified to be 3, and all parts that follow this must be ≥ 3. Thus,

for example, letting a = 334 and b = 37, we know that a ≺ b as a2 < b2, and

while 3331 is lexicographically less than 334, it is not an ascending composi-

tion. We shall prove a simple rule for generating the lexicographically least

element of any given set of ascending compositions momentarily; first, how-

ever, we define the concept of the lexicographic successor of a given ascending

composition.

Definition 5.6 (Lexicographic Successor). For any a1 . . . ak ∈ A(n) \ 〈n〉
the function Sσ(a1 . . . ak) computes the immediate lexicographic successor of

a1 . . . ak.

In Section 4.3 we used a recursive definition to compute the lexicograph-

ically least element of a set of interpart restricted compositions. Since the

137

§ 5.3. Succession Rules

unrestricted partitions are specified by the identity function, we can replace

σ(x) with x in the general recurrence (4.2) to compute the lexicographically

least element of a set of ascending compositions. We then arrive at the

following recurrence for MA(n,m), defined for all 1 ≤ m ≤ n:

MA(n,m) = m ·MA(n−m,m) (5.9)

where MA(n,m) = 〈n〉 if 2m > n. This recurrence is derived directly from

Theorem 4.5, and so has already been proved to be correct. In this more con-

crete setting we can also derive a nonrecursive rule for the lexicographically

least element of the set A(n,m), which we prove in the following lemma.

Lemma 5.2. For all positive integers m ≤ n, the lexicographically least

element of the set A(n,m) is given by

MA(n,m) =

µ︷ ︸︸ ︷
m. . .m 〈n− µm〉, (5.10)

where µ = bn/mc − 1.

Proof. Proceed by strong induction on n.

Base case: n = 1. Since 1 ≤ m ≤ n and n = 1, then m = 1, and so

2m > n. Then, by (5.9), we know that MA(n,m) = 〈n〉. Thus, as µ = 0

when n = 1, (5.10) correctly computes MA(n,m) when n = 1.

Induction step: Suppose, for some positive integer n that (5.10) holds

true for all positive integers m′ ≤ n′ < n. Suppose m is an arbitrary positive

integer such that m ≤ n. Suppose then that 2m > n. By dividing both sides

of this inequality by m, we see that n/m < 2, and so bn/mc ≤ 1. Similarly,

as m ≤ n, it follows that 1 ≤ n/m, and so 1 ≤ bn/mc. Thus, 1 ≤ bn/mc ≤ 1,

and so bn/mc = 1; hence µ = 0. By (5.9) MA(n,m) = 〈n〉, and as µ = 0,

zero copies of m are concatenated with 〈n− µm〉, and so (5.10) correctly

computes MA(n,m).

Suppose then that 2m ≤ n. By the inductive hypothesis and (5.9) we

138

§ 5.3. Succession Rules

have

MA(n,m) = m ·
µ′︷ ︸︸ ︷

m. . .m 〈n−m− µ′m〉

Clearly, if µ = µ′ + 1, then (5.10) correctly computes the lexicographically

least element of A(n,m). We know that µ′ = b(n−m)/mc−1, which clearly

gives us µ′ = bn/m − 1c − 1. It follows that µ′ = bn/mc − 2, and, as

µ = bn/mc − 1 from (5.10), we have µ = µ′ + 1, completing the proof.

Lemma 5.2 provides us with a convenient technique to compute the lexi-

cographically least element of the set A(n,m), and this in turn provides us

with a simple lexicographic succession rule for ascending compositions. This

succession rule is expressed and proved in the following theorem.

Theorem 5.3. If a1 . . . ak ∈ A(n) \ {〈n〉} then

SA(a1 . . . ak) = a1 . . . ak−2

µ︷ ︸︸ ︷
m. . .m 〈n′ − µm〉 (5.11)

where m = ak−1 + 1, n′ = ak−1 + ak, and µ = bn′/mc − 1.

Proof. Proof is immediate by Theorem 4.4 and Lemma 5.2.

This succession rule is implemented in RuleAsc (Algorithm 5.3), which

is trivially derived from RuleGenσ (Algorithm 4.3) by replacing σ(x) with

x. Since RuleAsc is a special case of RuleGenσ we inherit the correctness

of that algorithm, Theorem 4.7. (The succession rule (5.11) can of course be

implemented more literally, but algorithms involving division and multipli-

cation are much less efficient in practice.) In RuleAsc, and all subsequent

algorithms we shall study, we are interested only in generating all partitions

of n. Therefore, we shall not include any mechanism to restrict the initial

parts of the compositions generated by these algorithms.

Figure 5.3 shows the array states arising from the invocation RuleAsc(4).

At the outset, we set a1 ← 0 and a2 ← 4, giving us states s1 and s2. After

these steps, which insert what we may call the ‘initialisation composition’

into the array, the algorithm begins iteration. After entering the main loop,

we set x ← 1, y ← 3, and k ← 1. Then, as x ≤ y, we enter the while loop

139

§ 5.3. Succession Rules

s1 = 0 ∅ ∅ ∅
O

s2 = 0 4 ∅ ∅
O

s3 = 1 4 ∅ ∅
O

s4 = 1 1 ∅ ∅
O

s5 = 1 1 1 ∅
O

s6 = 1 1 1 1
O

s7 = 1 1 2 1
O

s8 = 1 3 2 1
O

s9 = 2 3 2 1
O

s10 = 2 2 2 1
O

s11 = 4 2 2 1
O

Figure 5.3: Array state-transition diagram for the succession rule based as-
cending composition generation algorithm.

of lines 8–12 and set a1 ← 1, giving us state s3. Subsequently, we set y ← 2,

k ← 2 and return to the head of the loop. Iteration continues along these

lines, successively producing states s4 and s5, until we assign y ← 0 and

k ← 4. Then, as x 6≤ y we do not enter the loop of lines 8–12, and instead

proceed to line 13 where we assign a4 ← 1 + 0, giving us state s6, which we

then visit. As k = 4, we return to the head of the main loop and set x← 2,

y ← 0, and k ← 3; during this iteration we do not enter the loop of lines

8–12, and instead proceed directly to line 13 and assign a3 ← 2 + 0, giving

us state s7, which we then visit. The remainder of the execution continues

along similar lines, and does not require further elaboration.

Analysis

The goal of our analysis is to derive a simple expression, in terms of the

number of partitions of n, for the total number of read and write opera-

tions [Kem98] made in the process of generating all ascending compositions

of n. Read and write operations are defined only on the compositions them-

selves, and not on any of the auxiliary local variables used to implement the

algorithmic details. Therefore, any statement of the form aj ← x is counted

as one write operation, and any statement of the form x← aj is counted as

one read. To count the number of times such statements are executed, we

140

§ 5.3. Succession Rules

Algorithm 5.3 RuleAsc(n)

Require: n > 0
1: k ← 2
2: a1 ← 0
3: a2 ← n
4: while k 6= 1 do
5: y ← ak − 1
6: k ← k − 1
7: x← ak + 1
8: while x ≤ y do
9: ak ← x

10: y ← y − x
11: k ← k + 1
12: end while
13: ak ← x+ y
14: visit a1 . . . ak
15: end while

shall first determine the number of times that certain key instructions are

executed; the main result is then a rudimentary application of Kirchhoff’s

Law [Knu72]. The key to our analysis is to observe the variable k, as this

tells us exactly how many times the bodies of the inner and outer loops are

executed. Therefore, let t6(n) and t11(n) be the number of times lines 6

and 11 are executed, respectively, in the process of generating all ascending

compositions of n with Algorithm 5.3.

Lemma 5.3. The number of times line 6 is executed during the execution of

Algorithm 5.3 is given by t6(n) = p(n).

Proof. As Algorithm 5.3 correctly visits all p(n) ascending compositions of n,

we know that line 14 is executed exactly p(n) times. Clearly line 6 is executed

precisely the same number of times as line 14, and so we have t6(n) = p(n),

as required.

Lemma 5.4. The number of times line 11 is executed during the execution

of Algorithm 5.3 is given by t11(n) = p(n)− 1.

Proof. The variable k is used to control termination of the algorithm. From

line 1 we know that k is initially 2, and from line 4 we know that the algorithm

141

§ 5.3. Succession Rules

terminates when k = 1. Furthermore, the value of k is modified only on

lines 6 and 11. By Lemma 5.3 we know that k is decremented p(n) times; it

then follows immediately that k must be incremented p(n)− 1 times, and so

we have t11(n) = p(n)− 1, as required.

Using these frequency counts we can now easily count the total number

of read and write operations required by RuleAsc to generate all ascending

compositions of n.

Theorem 5.4. Algorithm 5.3 requires RA5.3(n) = 2p(n) read operations to

generate the set A(n).

Proof. Read operations are carried out on lines 7 and 5, which are executed

p(n) times each by Lemma 5.3. Thus, the total number of read operations is

RA5.3(n) = 2p(n).

Theorem 5.5. Algorithm 5.3 requires WA5.3(n) = 2p(n)−1 write operations

to generate the set A(n), excluding initialisation.

Proof. After initialisation, write operations are carried out in Algorithm 5.3

only on lines 9 and 13. Line 13 is executed p(n) times by Lemma 5.3. We

can also see that line 9 is executed exactly as many times as line 11, and by

Lemma 5.4 we know that this value is p(n) − 1. Therefore, summing these

contributions, we get WA5.3(n) = 2p(n)− 1, completing the proof.

From Theorem 5.5 and Theorem 5.4 it is easy to see that we require an

average of two read and two write operations per partition generated: since

we required 2p(n) of both operations to generate all p(n) partitions of n,

the result follows immediately. Thus, for any value of n we are assured that

the total time required to generate all partitions of n will be proportional to

the number of partitions generated, implying that the algorithm is constant

amortised time. This completes our analysis of RuleAsc.

A Peripheral Result

Although not strictly relevant to our analyses of ascending and descending

composition generation algorithms, another result follows directly from the

142

§ 5.3. Succession Rules

analysis of Algorithm 5.3. Recall that in Theorem 5.3 we proved a succes-

sion rule to compute the lexicographic successor of an arbitrary ascending

composition, which, in the interest of clarity, we shall reproduce here. For

any a1 . . . ak ∈ A(n) \ {〈n〉} the lexicographic successor is given by

SA(a1 . . . ak) = a1 . . . ak−2

µ︷ ︸︸ ︷
m. . .m 〈n′ − µm〉

where m = ak−1 + 1, n′ = ak−1 + ak, and µ = bn′/mc − 1. Our analysis

of Algorithm 5.3 allows us prove a nonobvious theorem by summing the µ

values over all ascending compositions of n. If we compare the lexicographic

succession rule above and Algorithm 5.3 carefully, we realise that the µ copies

of m must be inserted into the array within the inner loop of lines 8–12; and

our analysis has given us the precise number of times that this happens.

Therefore, we know that the sum of µ values over all ascending compositions

of n (except the last composition, 〈n〉), must equal the number of write

operations made in the inner loop. Having made this observation, proving

the following theorem is quite simple, as we have only a few algorithmic

details to factor out to reach the true structural property in question.

Theorem 5.6. For all n ≥ 1

p(n) =
1

2

1 + n+
∑

a1...ak∈
A(n)\{〈n〉}

⌊
ak−1 + ak
ak−1 + 1

⌋ (5.12)

Proof. We know from Lemma 5.4 that the total number of write operations

made by Algorithm 5.3 in the inner loop of lines 8–12 is given by p(n) − 1.

Algorithm 5.3 applies the lexicographic succession rule above to all elements

of A(n) \ {〈n〉}, as well as one extra composition, which we referred to as

the ‘initialisation composition’. The initialisation composition is not in the

set A(n) as a1 = 0, and so we must discount the number of writes incurred

by applying the succession rule to this composition. The composition visited

immediately after 0n is 1 . . . 1, and so n−1 copies of 1 must have been inserted

into the array in the inner loop during this transition. Therefore, the total

143

§ 5.3. Succession Rules

number of writes made within the inner loop in applying the succession rule

to all elements of A(n) \ {〈n〉} is given by p(n) − 1 − (n − 1) = p(n) − n.

Therefore, from this result and the succession rule of Theorem 5.3 we get the

following:

p(n)− n =
∑

a1...ak∈
A(n)\{〈n〉}

(⌊
ak−1 + ak
ak−1 + 1

⌋
− 1

)

=
∑

a1...ak∈
A(n)\{〈n〉}

⌊
ak−1 + ak
ak−1 + 1

⌋
−

∑
a1...ak∈
A(n)\{〈n〉}

1

=
∑

a1...ak∈
A(n)\{〈n〉}

⌊
ak−1 + ak
ak−1 + 1

⌋
− p(n) + 1.

From here it is easy to derive (5.12), which completes the proof.

We can, in fact, rather simplify (5.12) if we suppose that all a1 . . . ak ∈
A(n) are prefixed by a value 0. More formally, a direct consequence of

Theorem 5.6 is that

p(n) =
1

2

1 +
∑

a1...ak∈A′(n)

⌊
ak−1 + ak
ak−1 + 1

⌋ , (5.13)

where A′(n) = {0 · a1 . . . ak | a1 . . . ak ∈ A(n)}. An example of how (5.13)

computes the number of partitions of n is given in Figure 5.4, where we apply

the formula to the partitions of 5. Fundamentally, what Theorem 5.6 shows

us is that if we let y be the largest part and x the second largest part in

an arbitrary partition of n, we can count the partitions of n by summing

b(x+ y)/(x+ 1)c over all partitions of n.

Theorem 5.6 does not represent an efficient means of computing p(n); in

fact it is difficult to imagine a less efficient means of computing the partition

numbers than (5.12), given that we must first generate all partitions of n

to do so. Of more interest, perhaps, than directly enumerating the unre-

stricted partitions of n are the indirect implications of (5.13). For example,

144

§ 5.3. Succession Rules

0

0

0

0

0

0

0

5

2

1

1

1

1

1

3

4

2

1

1

1

2

3

1

1

2

1 1

=

=

=

=

=

=

=

=∴ 1 +
∑
b(ak−1 + ak)/(ak−1 + 1)c 14

b(1 + 1)/(1 + 1)c
b(1 + 2)/(1 + 1)c
b(1 + 3)/(1 + 1)c
b(2 + 2)/(2 + 1)c
b(1 + 4)/(1 + 1)c
b(2 + 3)/(2 + 1)c
b(0 + 5)/(0 + 1)c

1

1

2

1

2

1

5

Figure 5.4: Illustration of Theorem 5.6 for n = 5. The number of partitions
of n may be obtained by summing b(x+ y)/(x+ 1)c over all partitions of n,
where y is the largest part and x is the second largest part (x can be equal
to y).

a straightforward consequence of Theorem 5.6 is

∑
a1...ak∈A′(n)

⌊
ak−1 + ak
ak−1 + 1

⌋
≡ 1 (mod 2),

that is, the sum of b(x + y)/(x + 1)c over all partitions of n (where y and

x are the largest and second-largest parts, respectively) is odd. Arithmetic

properties of enumeration functions are of great interest in the theory of

partitions [AO01]. According to Hardy and Wright [HW54, §19.12], “in spite

of the simplicity of the definition of p(n), very little is known about its

arithmetic properties. There is, for example, no simple criterion for deciding

whether p(n) is odd or even.” While our incidental result does not bring us

any closer to answering the particular question of the parity of p(n), it does,

perhaps, raise some other interesting questions; and these question are raised

through the analysis of our generation algorithm, RuleAsc.2

Our brief digression into the more abstract theory of partitions aside,

we can now return to our analysis of ascending and descending composition

generation algorithms. Having now developed and analysed a simple lex-

2It unclear to the author if Theorem 5.6 is known or not. It seems rather unlikely,
however, that the result has been proved using the same means, and is therefore a novel
contribution in either case.

145

§ 5.3. Succession Rules

icographic succession rule to generate all ascending compositions of n, we

now turn, in the next subsection, to examine the problem of generating all

descending compositions of n, using a commensurable method.

5.3.2 Descending Compositions

Up to this point we have considered only algorithms that generate com-

positions in lexicographic order. The majority of descending composition

generation algorithms, however, visit compositions in reverse lexicographic

order (McKay [McK70] refers to it as the ‘natural order’ for partitions).

For instance, in reverse lexicographic order the descending compositions

of 5 are 5, 41, 32, 311, 221, 2111, 11111. There are many different presen-

tations of the succession rule required to transform a descending compo-

sition from this list into its immediate successor: see Andrews [And76,

p.230], Knuth [Knu04c, p.1], Nijenhuis & Wilf [NW78, p.65–68], Page &

Wilson [PW79, §5.5], Skiena [Ski90, p.52], Stanton & White [SW86, p.13],

Wells [Wel71, p.150] or Zoghbi & Stojmenović [ZS98]. No analysis of this

succession rule in terms of the number of read and write operations [Kem98]

involved has been published, and in this section we analyse a basic implemen-

tation of the rule (we analyse more sophisticated techniques in Section 5.4.2).

If we formally define SD(d1 . . . dk) to be the immediate lexicographic pre-

decessor of a d1 . . . dk ∈ D(n) \ 1 . . . 1, the succession rule can be formulated

as follows. Given a descending composition d1 . . . dk where d1 6= 1, we obtain

the next composition in the ordering by applying the transformation

SD(d1 . . . dk) = d1 . . . dq−1

µ︷ ︸︸ ︷
m. . .m 〈n′ − µm〉 (5.14)

where q is the rightmost non-1 value (i.e., dj > 1 for 1 ≤ j ≤ q and dj = 1

for q < j ≤ k), m = dq−1, n′ = dq+k−q and µ = bn′/mc− [n′ mod m = 0].

This presentation can readily be derived from the treatments cited in the

opening paragraph of this subsection.

As an example, consider the descending composition d1d2 = 32. Finding

the rightmost non-1 value in this case is easy, as there are no 1s in the

146

§ 5.3. Succession Rules

Algorithm 5.4 RuleDesc(n)

Require: n > 0
1: d1 ← n
2: k ← 1
3: visit d1

4: while k 6= n do
5: `← k
6: m← dq
7: while m = 1 do
8: k ← k − 1
9: m← dq

10: end while
11: n′ ← m+ `− k
12: m← m− 1
13: while m < n′ do
14: dk ← m
15: n′ ← n′ −m
16: k ← k + 1
17: end while
18: dk ← n′

19: visit d1 . . . dk
20: end while

composition. Thus, q = 2, and therefore m = d2 − 1 = 1. After computing

the value of m we calculate n′ = dq + k− q = 2 + 2− 2 = 2, and we therefore

find that µ = b2/1c − [2 mod 1 = 0] = 2 − 1 = 1. Thus, we insert one

copy of 1 after dq−1, and append n′ − µm = 2 − 1 × 1 to the end of the

resulting composition, giving us SD(32) = 311. In another example, consider

the descending composition d1 . . . d7 = 5531111 of 17. In this case q = 3, as

the last four parts are 1. Hence, m = 2, n′ = 7 and so µ = 3; we then get

SD(5531111) = 552221.

The succession rule (5.14) is implemented in RuleDesc (Algorithm 5.4),

where each iteration of the main loop implements a single application of the

rule. We begin by visiting the composition 〈n〉 on line 3, and then successively

apply the rule until the array d contains the composition 1 . . . 1. The internal

loop of lines 7–9 implements a right-to-left scan for the largest index q such

that dq > 1, and then on lines 11 and 12 we calculate the values of m and

147

§ 5.3. Succession Rules

s1 = 4 ∅ ∅ ∅
O

s2 = 3 ∅ ∅ ∅
O

s3 = 3 1 ∅ ∅
O

s4 = 2 1 ∅ ∅
O

s5 = 2 2 ∅ ∅
O

s6 = 2 1 ∅ ∅
O

s7 = 2 1 1 ∅
O

s8 = 1 1 1 ∅
O

s9 = 1 1 1 ∅
O

s10 = 1 1 1 ∅
O

s11 = 1 1 1 1
O

Figure 5.5: Array state-transition diagram for the succession rule based de-
scending composition generation algorithm. Indices marked with the O sym-
bol are the indices in which a value is assigned to change the state of the
array, and array segments outlined in bold are the portions that are visited.

n′ based on this information. (We have not followed the precise formulation

of (5.14), but it can be easily verified that the effect is the same, and the

particular form of RuleDesc greatly facilitates our analysis.) Then, the

loop of lines 13–17 straightforwardly inserts µ copies of m into the array

from index dq onwards, and on line 16 appends n′ − µm to the end of the

resulting composition, before visiting d1 . . . dk on line 19.

The sequence of array states traversed by RuleDesc in the process of

generating all descending compositions of 4 is given in Figure 5.5. As we

have already discussed the operation of the succession rule in detail, we shall

not labour the point with an exhaustive description of the internal workings

of the algorithm. One notable aspect of the operation of RuleDesc that we

have not discussed is, however, apparent in this illustration. If we consider

states s9 and s10 we see an undesirable property of Algorithm 5.4 manifesting

itself. In these states we insert the value 1 into array elements d2 and d3

respectively; but these indices already contain the value 1, and so these write

operations are redundant. This behaviour proves to be a key feature of the

algorithm, as we shall see presently.

148

§ 5.3. Succession Rules

Analysis

The variable k is the key to the analysis of RuleDesc, as it controls the

termination of the algorithm, and is updated only via increment (line 16)

and decrement (line 8) operations. Thus, by counting the number of incre-

ment and decrement operations required by the algorithm to generate all

descending compositions of n, we determine the total number of iterations of

the loops involved. Therefore, let t8(n) be the total number of times line 8 is

executed in the progress of RuleDesc(n). The following lemma then derives

this number in terms of the number of partitions of n.

Lemma 5.5. The number of times line 8 is executed during the execution of

Algorithm 5.4 is given by t8(n) = 1− n+
∑n−1

x=1 p(x).

Proof. As exactly one descending composition is visited per iteration of the

outer while loop, we know that upon reaching line 6 there is a complete

descending composition of n contained in d1 . . . dk. Furthermore, as d1 ≥
· · · ≥ dk, we know that all parts of size 1 are at the end of the composition,

and so it is clear that line 7 will be executed exactly once for each part of size 1

in any given composition. As we visit the compositions at the end of the loop

and we terminate when k = n we will not reach line 5 when the composition

in question consists of n copies of 1 (as this is the lexicographically least,

and hence the last descending composition in reverse lexicographic order).

Thus, line 7 will be executed exactly as many times as there are parts of size

1 in all partitions of n, minus the n 1s contained in the last composition.

It is well known [Hon85, p.8] that the number of 1s in all partitions of n is

1 + p(1) + · · ·+ p(n− 1), and therefore we see that line 7 is executed exactly

1− n+
∑n−1

x=1 p(x), as required.

Lemma 5.5 derives the total number of decrement operations carried out

on the variable k, and arrives at its conclusion by using a well known combi-

natorial property of the set of all partitions of n. We can now use Lemma 5.5

to derive the total number of increment operations. Letting t16(n) be the

total number of times line 16 is executed by RuleDesc(n), we get the fol-

lowing lemma.

149

§ 5.3. Succession Rules

Lemma 5.6. The number of times line 16 is executed during the execution

of Algorithm 5.4 is given by t16(n) =
∑n−1

x=1 p(x).

Proof. The variable k is used to control termination of Algorithm 5.4: the

algorithm begins with k = 1 and terminates when k = n. Examining Algo-

rithm 5.4 we see that k is modified on only two lines: it is incremented on

line 16 and decremented on line 8. Thus, we must have n−1 more increment

operations than decrements; by Lemma 5.5 there are exactly 1−n+
∑n−1

x=1 p(x)

decrement operations, and so we see that line 14 is executed
∑n−1

x=1 p(x) times,

as required.

Lemma 5.6 tells us the total number of times the loop of lines 13–17 is

executed. It is now straightforward to determine the total number of read

and write operations incurred by RuleDesc(n).

Theorem 5.7. Algorithm 5.4 requires RA5.4(n) =
∑n

x=1 p(x)− n read oper-

ations to generate the set D(n).

Proof. Read operations are performed on lines 6 and 9 of Algorithm 5.4. By

Lemma 5.5 we know that line 8 is executed 1− n+
∑n−1

x=1 p(x) times, and so

line 9 is executed an equal number of times. Clearly line 6 is executed p(n)−1

times, and so we get a total of RA5.4(n) =
∑n

x=1 p(x)− n, as required.

Theorem 5.8. Algorithm 5.4 requires WA5.4(n) =
∑n

x=1 p(x) − 1 write op-

erations to generate the set D(n), excluding initialisation.

Proof. The only occasions in Algorithm 5.4 where a value is written to the

array d are lines 14 and 18. By Lemma 5.6 we know that line 16 is executed

exactly
∑n−1

x=1 p(x), and it is straightforward to see that line 14 is executed

precisely the same number of times. As we visit exactly one composition

per iteration of the outer while loop, and all descending compositions except

the composition 〈n〉 are visited with this loop, we then see that line 18 is

executed p(n) − 1 times in all. Therefore, summing these contributions we

get WA5.4(n) =
∑n−1

x=1 p(x) + p(n)− 1 =
∑n

x=1 p(x)− 1 as required.

Theorems 5.7 and 5.8 derive the precise number of read and write op-

erations required to generate all descending compositions of n using Algo-

rithm 5.4, and this completes our analysis of the algorithm. We shall discuss

150

§ 5.3. Succession Rules

the implications of these results in the next subsection, where we compare

the total number of read and write operations required by RuleAsc(n) and

RuleDesc(n).

After the incidental result of Theorem 5.6, we are alerted to the possibility

of an interesting structural result emerging from our analysis of generation

algorithms. In Theorem 5.6 we showed that the number of partitions of nmay

be computed by summing b(x+y)/(x+1)c over all partitions of n, where y is

the largest part in a given partition and x is the second largest part (x ≤ y).

An analogous result is implied by the analysis of Algorithm 5.4, although it is

more complex. From the succession rule for descending compositions (5.14)

we know that µ copies of a certain value are inserted into the composition

at each transition, and from our analysis we know that these values must be

inserted in the inner loop of lines 11–15 of Algorithm 5.4. By Lemma 5.6

we know the precise number write operations incurred within this loop when

summed over all p(n) − 1 transitions made by the algorithm. Combining

knowledge with the succession rule we get the following equation.

n−1∑
x=1

p(x) =
∑

d1...dk∈
D(n)\{1...1}

(bn′/mc − [n′ mod m = 0]) (5.15)

where m = dq − 1, n′ = dq + k − q and q is the rightmost non-1 value

(i.e., dj > 1 for 1 ≤ j ≤ q and dj = 1 for q < j ≤ k). We must exclude

the composition 1 . . . 1, (i.e. the composition consisting of n 1s) since the

algorithm terminates after this composition is visited, and so we do not

transition over it. Unfortunately, the combinatorial interpretation of this

identity is not clear, and it is not obvious how (5.15) may be subsequently

simplified. We shall, therefore, not pursue the matter further, having at least

identified the possibility for future work.

5.3.3 Comparison

In this section we have examined the basic succession rules for both as-

cending and descending compositions. We developed a new succession rule

151

§ 5.3. Succession Rules

for ascending compositions based on our general methods of the previous

chapter, and also examined the well-known and widely-cited succession rule

for generating descending compositions in reverse lexicographic order. The

amount of effort required to generate the set of all partitions using these rules

can be quantified by counting the total number of read and write operations

incurred by the corresponding algorithms.

In this section we developed two algorithms. The first algorithm we

considered, RuleAsc (Algorithm 5.3), generates ascending compositions of

n; the second algorithm, RuleDesc (Algorithm 5.4), generates descend-

ing compositions of n. We analysed the total number of read and write

operations required by these algorithms to generate all partitions of n by

iteratively applying the succession rule involved. The totals obtained, disre-

garding unimportant trailing terms, for the ascending composition generator

are summarised as follows.

RA5.3(n) ≈ 2p(n) and WA5.3(n) ≈ 2p(n) (5.16)

That is, we require 2p(n) operations of the form x← aj and 2p(n) operations

of the form aj ← x to generate all partitions of n using the ascending com-

position generator. Turning then to the descending composition generator,

we obtained the following totals, again removing insignificant trailing terms.

RA5.4(n) ≈
n∑
x=1

p(x) and WA5.4(n) ≈
n∑
x=1

p(x) (5.17)

These totals would appear to indicate a large disparity between the algo-

rithms, but we must examine the asymptotics of
∑n

x=1 p(x) to determine

whether or not this is significant. We shall do this in terms of the average

number of read and write operations per partition which is implied by these

totals.

We know the total number of read and write operations required to gen-

erate all p(n) partitions of n using both algorithms. Thus, to determine

the expected number of read and write operations required to transform the

average partition into its immediate successor we must divide these totals

152

§ 5.3. Succession Rules

by p(n). In the case of the ascending composition generation algorithms

this is trivial, as both expressions are of the form 2p(n), and so dividing

by p(n) plainly yields the value 2. Determining the average number of read

and write operations using the succession rule for descending compositions

is more difficult, however, as both expressions involve a factor of the form∑n
x=1 p(x).

Using the asymptotic expressions for p(n) we can get a qualitative esti-

mate of these functions. Odlyzko [Odl96, p.1083] derived an estimate for the

value of sums of partition numbers which can be stated as follows

n∑
x=1

p(x) =
eπ
√

2n/3

2π
√

2n

(
1 +O(n−1/6)

)
.

Then, dividing this by the asymptotic expression for p(n) we get the following

approximation
1

p(n)

n∑
x=1

p(x) ≈ 1 +

√
6n

π
, (5.18)

which, although crude, is sufficient for our purposes. The key feature of (5.18)

is that the value is not constant: it is O(
√
n). Using this approximation

we obtain the following values for the number of read and write operations

expected to transform a random partition of n into its successor.

Reads Writes

Ascending 2 2

Descending 1 + 0.78
√
n 1 + 0.78

√
n

To make the difference between these two succession rules clear, let us take

a hypothetical example. Suppose we are presented with a random partition

of n, and requested to produce its immediate successor using succession rules

for either ascending or descending compositions. If we choose to use the rule

for ascending compositions we expect to perform approximately two read

and two write operations, irrespective of the value of n. On the other hand,

if we choose to use the succession rule for descending compositions we can

expect to perform around 1 +
√

6n/π read and 1 +
√

6n/π write operations:

153

§ 5.3. Succession Rules

the number of read and write operations required is dependent on the value

of n.

We can see the qualitative difference between the algorithms by examining

their read and write tapes in Figure 5.6. The tapes in question are generated

by imagining that read and write heads mark a tape each time one of these

operations is made. The horizontal position of each head is determined by

the index of the array element involved. The tape is advanced one unit each

time a composition is visited, and so we can see the number of read and

write operations required for each individual partition generated. Regarding

Figure 5.6 then, and examining the read tape for RuleAsc, we can see

that every partition requires exactly 2 reads; in contrast, the read tape for

RuleDesc shows a maximum of n − 1 read operations per partition, and

this oscillates rapidly as we move along the tape. Similarly, the write tape for

RuleAsc shows that we sometimes need to make a long sequence of write

operations to make the transition in question, but that these are compensated

for — as our analysis has shown — by the occasions where we need only one

write. The behaviour of the write head in RuleDesc is very similar to that

of its read head, and we again see many transitions where a large number of

writes are required.

To conclude this section, we can make the following reasonable assertion.

If we wish to generate all partitions of n using a simple succession rule of

the form studied by Kemp [Kem98], it is imperative that we use ascending

compositions rather than descending compositions. The difference in the al-

gorithms is not due to an algorithmic nuance: it reflects of a fundamental

property of the objects in question. The total suffix length [Kem98] of de-

scending compositions is much greater than that of ascending compositions,

because in many descending composition the suffix consists of the sequence

of 1s; and we known that the total number of 1s in all partitions of n is∑n−1
x=1 p(x).

154

b b b bb bb bb bb bb bb bb bb bb bb bb bb bb bb b b bb bb bb bb bb bb b b bb bb bb bb bb bb bb b b bb bb bb bb bb bb bb bb bb bb bb b b bb bb bb bb bb bb bb bb bb bb bb bb bb b b bb bb bb bb bb bb bb bb bb bb bb b b bb bb bb bb bb bb bb b

r rr r r r r r r r r r r rrrr rrr rrr r rrr rrr r rrr rrr r r rrr rrr rr rrr r r rrr rrr r rrr rrr r r r rrr rrr rr rrr r rrr rr rrr r r r rrr rrr r rrr rrr r rr rrr rr rrr r r r r rrr rrr rr rrr r rrr rr rrr r r rrr rrr r rrr rr rr

b bb b bbb b bb bbbb b bb b bbb bbbbb b bb b bbb bb bbbb bbbbbb b bb b bbb b bb bbbb b bbb bbbbb bbbbbbb b bbb b bb bbbb bb b bbb bbbbb bb bbbb bbbbbb bbbbbbbb b bb b bbb bbbbb b bbb bb bbbb bbbbbb b bbb bbbbb bbbbbbb bbbbbbbbb b bb bbbb b bbb bbbbb bbbbbbb bb bbbb bbbbbb bbbbbbbb bbbbbbbbbb b bbb bbbbb bbbbbbb bbbbbbbbb bbbbbbbbbbb

rr rr rr rr rr rr r rr rr rr rr rr r r rr rr rr rr rr r rr r rr r r r rr rr rr rr rr rr rr r rr r rr rr r r rr r r r r rr r rr rr rr rr r rr r rr rr rr r r rr r r rr r rr r r r rr r r r r r rr r rr rr rr rr r r rr r rr rr r rr r rr r r r rr r r rr rr r r rr r r r r rr r r r r r r rr r r rr rr r rr r rr rr r r rr r r r r rr r r r rr r rr r r r rr r r r r r rr r r r r r r r rr r r r r rr rr r r rr r r r r rr r r r r r r rr r r r r r r r r rr r r r r r r r r r r r
Read (154) Write (154) (271) Read (271) Write
RuleAsc(12) p(12) = 77 RuleDesc(12)

Figure 5.6: Read and write tapes for the direct implementations of succes-
sion rules to generate ascending and descending compositions. On the left we
have the read and write tapes for the ascending composition generator, Algo-
rithm 5.3; on the right, then, are the corresponding tapes for the descending
composition generator, Algorithm 5.4. In both cases, the traces correspond
to the read and write operations carried out in generating all partitions of
12.

155

§ 5.4. Accelerated Algorithms

5.4 Accelerated Algorithms

In the previous section we developed two partition generation algorithms: an

ascending composition generator (RuleAsc) and a descending composition

generator (RuleDesc). Both of these algorithms are direct and literal im-

plementations of their respective succession rules. In the case of RuleAsc,

the succession rule is a concrete instantiation of the rule we developed in

Section 4.3; for RuleDesc, the succession rule is the well-known mecha-

nism for deriving the lexicographic predecessor of a descending composition.

Our analysis of these algorithms showed that RuleAsc is far more efficient

than RuleDesc. This is, however, not a fair representation of descending

composition generation algorithms. Several techniques have been developed

that dramatically reduce the number of read and write operations required

to generate all descending compositions of n.

In this section we study algorithms utilising structural properties of the

sets of ascending and descending compositions to reduce the number of read

and write operations required. The algorithms presented are the most ef-

ficient known examples of ascending and descending composition genera-

tors, ensuring that we have a fair comparison of the algorithms arising from

the two candidate encodings for partitions. In Section 5.4.1 we develop a

new ascending composition generator that requires fewer read operations

than RuleAsc; this is achieved by utilising some auxiliary theory we de-

veloped in Section 4.4.1. Then, in Section 5.4.2 we study the most efficient

known descending composition generation algorithm, due to Zoghbi & Sto-

jmenović [ZS98], which requires far fewer read and write operations than

RuleDesc. In Section 5.4.3, we compare these two algorithms to determine

which of the two is more efficient. Finally, Section 5.4.4 we empirically com-

pare the ascending composition generator with the most efficient examples

of descending composition generators, including algorithms that utilise the

multiplicity and part-count representations.

156

§ 5.4. Accelerated Algorithms

5.4.1 Ascending Compositions

In this subsection we improve on RuleAsc (Algorithm 5.3) by applying the

theory of ‘terminal’ and ‘nonterminal’ compositions, which we developed in

a more general context in Section 4.4.1. To enable us to fully analyse the re-

sulting algorithm we require an expression to enumerate terminal ascending

compositions in terms of p(n), the the number of partitions of n. In the open-

ing part of this subsection we develop the theory of terminal and nonterminal

compositions in this more concrete context. A byproduct of this analysis is

a new proof for a partition identity on the number of partitions where the

largest part is less than twice the second largest part. After developing this

necessary theory, we move on to the description of the algorithm itself, and

its subsequent analysis.

Ascending Composition Blocks

In Section 4.4.1 we developed the theory of ‘terminal’ and ‘nonterminal’

compositions. This theory allowed us to develop a more efficient implemen-

tation of the abstract succession rule for interpart restricted compositions.

By proving certain lexicographic contiguity results, we can make many of the

necessary transitions more efficiently than is implied by the general succes-

sion rule. The greater the number of transitions that are effected via these

special cases, the greater the gain in efficiency we can expect; and the number

of times the special cases can be invoked is directly related to the number of

terminal compositions within the set of interpart restricted compositions.

In general, determining the number of terminal compositions within a

given set of interpart restricted compositions (in terms of the total number

of compositions) is a difficult problem. For the particular instance of the

restriction function that we are interested in for the purposes of this chapter

(i.e. the ascending compositions, where σ(x) = x) we can completely solve

this problem, allowing us to further elucidate the computational properties

of the accelerated generation algorithm. In Section 4.4.1 we formally defined

terminal and nonterminal compositions for interpart restricted compositions.

It is useful to override these definitions with their concrete equivalents here.

157

§ 5.4. Accelerated Algorithms

Definition 5.7 (Terminal Ascending Composition). For some positive in-

teger n, an ascending composition a1 . . . ak ∈ A(n) is terminal if k = 1 or

2ak−1 ≤ ak. Let TA(n,m) denote the set of terminal compositions in A(n,m),

and TA(n,m) denote the cardinality of this set (i.e. TA(n,m) = |TA(n,m)|).

Definition 5.8 (Nonterminal Ascending Composition). For some positive

integer n, a1 . . . ak ∈ A(n) is nonterminal if k > 1 and 2ak−1 > ak. Let

NA(n,m) denote the set of nonterminal compositions in A(n,m), and let

NA(n,m) denote the cardinality of this set (i.e. NA(n,m) = |NA(n,m)|).

Definition 5.7 and Definition 5.8 are directly derived from their general

counterparts in Section 4.4.1. An interpart restricted composition a1 . . . ak ∈
Cσ(n) is defined to be terminal if k = 1 or σ(ak−1) + σ(σ(ak−1)) ≤ ak; then,

replacing for σ(x) = x we obtain Definition 5.7. We shall often refer to a

grouping of terminal and nonterminal compositions as a ‘block’ of composi-

tions; this informal name corresponds to the actual application of terminal

and nonterminal compositions in the generation algorithm we shall develop

presently.

The idea behind terminal and nonterminal compositions, and the corre-

sponding block-based structure of the set A(n), is quite simple and can be

easily seen by means of a example.

7 8 9 10

13 12 11 10

20

Nonterminal Compositions

@
@R Terminal Composition

�
�	

(5.19)

In this example we see the lexicographically last five ascending compositions

of 20, which together constitute the last ascending composition block of the

set A(20). The terminology ‘terminal’ and ‘nonterminal’ compositions be-

comes a little clearer when viewed in this light. The composition 〈20〉 is

terminal as it contains only one part (see Definition 5.7); it is also the last

composition in the block that we have shown, which provides the motivation

for the term ‘terminal’. The compositions preceding 〈20〉 are nonterminal as,

in each case, the last part is less than twice the second-last part. Our ex-

158

§ 5.4. Accelerated Algorithms

ample here may be a little misleading in one respect: terminal compositions

can, of course, be of any length. If, for example, we prefixed 1 to all of the

compositions in (5.19), the resulting compositions would still be nonterminal

and terminal in the same way, as 2× 1 ≤ 20, ensuring that 〈1〉〈20〉 is termi-

nal, and prefixing any values to a nonterminal composition does not alter its

nonterminal status.

The example in (5.19) immediately suggests an efficient means of gen-

erating such blocks. It is easy to see that we can transition between the

nonterminal compositions by incrementing and decrementing the values of

the second-last and last parts, respectively. When we cannot perform this

operation (i.e. when it causes the second-last part to be greater than the last

part) we simply add these two values together and visit the resulting termi-

nal composition. This is the informal basis of our improved generator, but

to accurately predict the behaviour of the algorithm we need to determine

the number of terminal compositions in the set A(n).

In Section 4.4.1 we developed a recurrence equation to count the terminal

compositions in a given set of interpart restricted compositions. We shall now

study the concrete instantiation of this general recurrence, which enumerates

the terminal ascending compositions of n. We then solve this recurrence in

terms of the partition numbers p(n), and discover that the terminal ascending

compositions of n are enumerated by p(n)− p(n− 2).

We begin by developing an iterated recurrence to enumerate the ascending

compositions of n. Iterated recurrences are useful in this situation as all of

the recursive invocations are in terms of smaller values of n, allowing us

to apply the method of strong induction to prove the required results. To

determine the upper bounds of the summations involved, we require the

following lemma concerning the floor function [GKP94, §3.1].

Lemma 5.7. For all positive integers x, m and n, mx ≤ n ⇐⇒ x ≤ bn/mc.

Proof. Suppose x, m and n are positive integers. Suppose also that mx ≤ n.

It follows immediately from this premise that x ≤ n/m, and as x is an integer

(and so x cannot be a fractional value between bn/mc and n/m), we have

x ≤ bn/mc; thus mx ≤ n =⇒ x ≤ bn/mc.

159

§ 5.4. Accelerated Algorithms

Suppose x ≤ bn/mc. Then, mx ≤ mbn/mc, and since n/m ≤ bn/mc,
mx ≤ n. Therefore, x ≤ bn/mc =⇒ mx ≤ n. Thus, mx ≤ n ⇐⇒ x ≤
bn/mc, as required.

Using this lemma we can now use our general iterative recurrence of Sec-

tion 3.2.1 to derive an equation where the upper and lower bounds on the

summation are in closed form. Thus, letting A(n,m) denote the number of

ascending compositions of n where the initial part is at least m (see Sec-

tion 5.1 for a full definition), we obtain the following result.

Theorem 5.9. For all positive integers m ≤ n, A(n,m) satisfies the recur-

rence

A(n,m) = 1 +

bn/2c∑
x=m

A(n− x, x). (5.20)

Proof. Replacing for σ(x) = x in (3.7) we get

A(n,m) = 1 +
∑
x≥m
2x≤n

A(n− x, x).

The condition on this summation implies that we sum over all values x such

that x ≥ m and 2x ≤ n. From Lemma 5.7 we know that 2x ≤ n =⇒ x ≤
bn/2c, and so we must sum over all values x such that m ≤ x ≤ bn/2c. Thus,

we get A(n,m) = 1 +
∑bn/2c

x=m A(n− x, x), as required.

We require a similar recurrence to enumerate the terminal ascending com-

positions, and so we let TA(n,m) denote the number of terminal compositions

in the set A(n,m). The terminal ascending compositions are a subset of the

ascending compositions, and the construction rule implied is the same: the

number of terminal ascending compositions of n where the initial part is

exactly m is equal to the number of terminal compositions of n − m with

initial part at least m. The only difference, then, between the recurrences for

ascending compositions and terminal ascending compositions occurs in the

boundary conditions. The recurrence is proved formally as follows.

160

§ 5.4. Accelerated Algorithms

Theorem 5.10. For all positive integers m ≤ n, TA(n,m) satisfies the re-

currence

TA(n,m) = 1 +

bn/3c∑
x=m

TA(n− x, x). (5.21)

Proof. Replacing for σ(x) = x in Theorem 5.10 (Section 4.4.1) we obtain the

recurrence

TA(n,m) = TA(n−m,m) + TA(n,m+ 1) (5.22)

where TA(n,m) = 1 if 3m > n. By the contrapositive of Lemma 5.7 we

known that 3m > n =⇒ m > bn/3c, and so we know that TA(n,m) = 1 if

m > bn/3c. Then, expanding the term TA(n,m+ 1) in (5.22) we see that

TA(n,m) = TA(n−m,m) + TA(n− (m+ 1),m+ 1) + · · ·

+ TA(n− bn/3c, bn/3c) + 1,

as each term where m ≤ bn/3c corresponds to the recursive expansion

of TA(n − m,m). Gathering the relevant terms into a summation we get

TA(n,m) = 1 +
∑bn/3c

x=m TA(n− x, x), completing the proof.

With Theorem 5.9 and Theorem 5.10 we have proved the correctness of

the enumeration functions for ascending compositions and terminal ascending

compositions, respectively. Before we move onto the main result, where we

prove that TA(n,m) = A(n,m) − A(n − 2,m), we require some auxiliary

results which simplify the proof of this assertion. In Lemma 5.8 we prove

an equivalence between logical statements of a particular form involving the

floor function, which is useful in Lemma 5.9; the latter lemma then provides

the main inductive step in our proof of the central theorem of this section.

Lemma 5.8. If x, m and n are positive integers then x ≤ b(n−x)/mc ⇐⇒
x ≤ bn/(m+ 1)c.

Proof. Suppose x, m and n are positive integers. Suppose x ≤ b(n− x)/mc.
Thus, x ≤ (n − x)/m, and so x ≤ n/(m + 1). Then, as bn/(m + 1)c ≤
n/(m + 1) and x is an integer, we know that x ≤ bn/(m + 1)c, and so

x ≤ b(n− x)/mc =⇒ x ≤ bn/(m+ 1)c.

161

§ 5.4. Accelerated Algorithms

Suppose that x ≤ bn/(m + 1)c. Then, x ≤ n/(m + 1), and so x ≤ (n −
x)/m. Once again, as x is an integer it is apparent that x ≤ b(n− x)/mc ≤
(n − x)/m, and so x ≤ bn/(m + 1)c =⇒ x ≤ b(n − x)/mc. Therefore,

as x ≤ b(n − x)/mc =⇒ x ≤ bn/(m + 1)c and x ≤ bn/(m + 1)c =⇒
x ≤ b(n − x)/mc we see that x ≤ b(n − x)/mc ⇐⇒ x ≤ bn/(m + 1)c, as

required.

We shall momentarily prove that TA(n) = p(n)−p(n−2), but our general

argument requires that we restrict our attention to values of n ≥ 3. If we

consider TA(1) and TA(2) for a moment, however, we can see that the identity

still holds. By convention p(0) = 1 and p(n) = 0 for all n < 0. Thus, our

general rule asserts that TA(1) = 1−0, and TA(2) = 2−1, both of which are

correct. Therefore, we may proceed with our proof, safe in the knowledge that

we are proving our assertion for all positive integers. The key observation

we require for our general argument is that A(n−x, x) = 1 if x > bn/3c and

x < n; this is a direct consequence of the recurrence (5.20). The following

lemma uses this observation to provide the key inductive step of the proof.

Lemma 5.9. For all positive integers n > 3

bn/2c∑
x=bn/3c+1

A(n− x, x) = 1 +

b(n−2)/2c∑
x=bn/3c+1

A(n− 2− x, x). (5.23)

Proof. Suppose n > 3 and 1 ≤ m ≤ n, and consider the left-hand side

of (5.23). We know that A(n,m) = 1 if m > bn/2c, as the summation in

recurrence (5.20) will be empty. By the contrapositive of Lemma 5.8 we know

that x > b(n − x)/2c ⇐⇒ x > bn/3c, and we therefore know that each

term in the summation of the left-hand side of (5.23) is equal to 1. Thus, we

see that
bn/2c∑

x=bn/3c+1

A(n− x, x) = bn/2c − bn/3c − 1. (5.24)

Similarly, as x > bn/3c =⇒ x > b(n − x)/2c, it clearly follows that

x > bn/3c =⇒ x > b(n−x)/2c−1, or x > bn/3c =⇒ x > b(n−2−x)/2c.
Thus, each term in the summation on the right-hand side of (5.23) must also

162

§ 5.4. Accelerated Algorithms

equal 1, and so we get

1 +

b(n−2)/2c∑
x=bn/3c+1

A(n− 2− x, x) = 1 + b(n− 2)/2c − bn/3c − 1

= bn/2c − bn/3c − 1. (5.25)

Therefore, as (5.24) and (5.25) show that the left-hand and right-hand side

of (5.23) are equal, the proof is complete.

We are now in a position to prove the main result of this section, which

shows that the number of terminal compositions of n is equal to the number

of ascending compositions of n minus the number of ascending compositions

n−2. Lemma 5.9 provides the crucial inductive step in this proof; by noting

that the trailing terms we require to complete both recurrences are equal,

we can add and subtract the appropriate value without affecting the overall

value of the sum. The theorem is then stated and proved as follows.

Theorem 5.11. If n ≥ 3, then TA(n,m) = A(n,m) − A(n − 2,m) for all

1 ≤ m ≤ bn/2c.

Proof. Proceed by strong induction on n.

Base Case: n = 3. As 1 ≤ m ≤ bn/2c and n = 3, we know that m = 1.

Computing TA(3, 1), we get 1 + TA(2, 1) = 2. We also find A(3, 1) = 3 and

A(1, 1) = 1, and so the base case of the induction holds.

Inductive Case. Suppose TA(n′,m) = A(n′,m)− A(n′ − 2,m) when 1 ≤
m ≤ bn′/2c, for all 3 < n′ < n, and some integer n. Then, as x ≤
b(n − x)/2c ⇐⇒ x ≤ bn/3c, by Lemma 5.8, we can apply this induc-

tive hypothesis to each term TA(n− x, x) in (5.21), giving us

TA(n,m) = 1 +

bn/3c∑
x=m

(A(n− x, x)− A(n− 2− x, x))

= 1 +

bn/3c∑
x=m

A(n− x, x)−
bn/3c∑
x=m

A(n− 2− x, x). (5.26)

163

§ 5.4. Accelerated Algorithms

By Lemma 5.9 we know that

bn/2c∑
x=bn/3c+1

A(n− x, x)−
b(n−2)/2c∑
x=bn/3c+1

A(n− 2− x, x)− 1 = 0,

and so we can add the left-hand side of this equation to the right-hand side

of (5.26), to get

TA(n,m) = 1 +

bn/3c∑
x=m

A(n− x, x)−
bn/3c∑
x=m

A(n− 2− x, x)

+

bn/2c∑
x=bn/3c+1

A(n− x, x)−
b(n−2)/2c∑
x=bn/3c+1

A(n− 2− x, x)− 1.

Then, gathering the terms A(n−x, x) and A(n−2−x, x) into the appropriate

summations we get

TA(n,m) = 1 +

bn/2c∑
x=m

A(n− x, x)− 1−
b(n−2)/2c∑
x=m

A(n− 2− x, x),

which by (5.21) gives us TA(n,m) = A(n,m)−A(n− 2,m), as required.

For the purposes of our analysis it is useful to know the total number of

terminal and nonterminal compositions of n, and it is worthwhile formalis-

ing the results here for reference. Therefore, letting TA(n) = TA(n, 1) and

NA(n) = NA(n, 1), we get the following corollaries defined in terms of the

partition function p(n).

Corollary 5.5. For all positive integers n, TA(n) = p(n)− p(n− 2).

Proof. As TA(n) = TA(n, 1) and A(n, 1) = p(n), proof is immediate by The-

orem 5.11 for all n ≥ 3. Since p(n) = 0 for all n < 0 and p(0) = 1, we can

readily verify that TA(2) = TA(1) = 1, as required.

Corollary 5.6. If n is a positive integer then NA(n) = p(n− 2).

164

§ 5.4. Accelerated Algorithms

Proof. An ascending composition is either terminal or nonterminal. As the

total number of ascending compositions of n is given by p(n), we get NA(n) =

p(n)− (p(n)− p(n− 2)) = p(n− 2). as required.

Corollaries 5.5 and 5.6 prove a nontrivial structural property of the set

of all ascending compositions, and can be phrased in more conventional par-

tition theoretic language. Consider an arbitrary partition of n, and let y

be the largest part in this partition. We then let x be the second largest

part (x ≤ y). Corollary 5.6 then shows that the number of partitions of n

where 2x > y is equal to the number of partitions of n − 2. This result is

known, and has been reported by Adams-Watters [Slo05, Seq.A027336]. The

preceeding treatment, however, would appear to be the first published proof

of the identity.

Algorithm

In Section 4.4 we developed and analysed an efficient algorithm to generate

interpart restricted compositions of n. The performance of this algorithm

relative to the direct successor algorithm of Section 4.1 is dependent on the

frequency of terminal compositions within the class of compositions in ques-

tion: the smaller the number of terminal compositions, the more efficient

the algorithm. In the previous part of this subsection we proved that the

number of terminal compositions in the set of ascending compositions of n

is equal to p(n) − p(n − 2). From the asymptotics of p(n) we know that

p(n− 2)/p(n) ≈ 1/e2π/
√

6n [Knu04c, p.11], and we can therefore see that the

proportion of compositions in the set A(n) that are terminal will approach

zero for large values of n. Thus, by using the accelerated algorithm of Sec-

tion 4.4, we should see a substantial gain in efficiency over the rule-based

ascending composition generation algorithm of the previous section.

The accelerated ascending composition generation algorithm, AccelAsc

(Algorithm 5.5), is obtained by modifying RuleAsc (Algorithm 5.3) to

utilise the block structure we have been discussing. (The algorithm is derived

from our accelerated interpart restricted composition generator, AccelGenσ

(Algorithm 4.5) by replacing σ(x) with x.) At the head of the main loop x

165

§ 5.4. Accelerated Algorithms

Algorithm 5.5 AccelAsc(n)

Require: n ≥ 1
1: k ← 2
2: a1 ← 0
3: y ← n− 1
4: while k 6= 1 do
5: k ← k − 1
6: x← ak + 1
7: while 2x ≤ y do
8: ak ← x
9: y ← y − x

10: k ← k + 1
11: end while
12: `← k + 1
13: while x ≤ y do
14: ak ← x
15: a` ← y
16: visit a1 . . . a`
17: x← x+ 1
18: y ← y − 1
19: end while
20: y ← y + x− 1
21: ak ← y + 1
22: visit a1 . . . ak
23: end while

and y contain the values of the largest and second-largest parts in the previ-

ously visited partition, as before. We then write a number of copies of x into

the array, if required, also as before. The differences between the algorithms

begin here. If we examine the loop condition on line 7, we can see that the

termination condition is now 2x ≤ y instead of x ≤ y. Therefore, we insert

one less copy of x into the array than in the corresponding section of Algo-

rithm 5.3. After this loop has finished iterating, we set ` ← k + 1, and test

the loop condition on line 13.

Within the loop of lines 13–19 we visit a set of contiguous nonterminal

compositions. We can see that the compositions visited on line 16 must be

nonterminal; this is because, upon reaching line 7 the condition 2x > y must

166

§ 5.4. Accelerated Algorithms

hold. Then, as we assign ak ← x and ak+1 ← y on lines 14 and 15, the compo-

sition a1 . . . a` visited on line 16 is nonterminal, by definition. Using the conti-

guity results proved in Section 4.4.1, we know that the lexicographic successor

of any nonterminal composition a1 . . . ak is either a1 . . . ak−2〈ak−1 +1〉〈ak−1〉
or a1 . . . ak−2〈ak−1 + ak〉. The former case, where we simply increment the

second last part and decrement the last, arises when we can perform this

operation without violating the ascending order property. The latter case,

then, arises when we cannot increment and decrement the second-last and

last parts, respectively, and we simply add the two values together. It is

not difficult to see that the latter half of the main loop of Algorithm 5.5

implements this sequence of transitions correctly; and it is quite clear that

transitions made within the loop of lines 13–18 are efficient.

Another means of reducing the total number of read operations is to

maintain the value of y between iterations. Recall that in Algorithm 5.3 we

set y ← ak − 1 at the head of the loop. At the tail of the previous loop

iteration, however, we set ak ← x + y, and so instead of reading this value

back from the array, we can maintain it between loop iterations. Then, by

setting y ← n−1 before iteration begins, we can remove an unnecessary read

operation from the loop. This improvement is an incremental one, and does

not make a significant difference to the overall running time of the algorithm.

It does, however, increase the degree to which we do our housekeeping by

using local variables alone, and there seems little reason to exclude it.

Analysis

Once again, the variable k is the key to the analysis of our algorithm be-

cause it is used to control termination of the algorithm and is modified via

increment and decrement operations only. We can then infer the frequency

of certain key instructions, and use this information to determine the total

number of times the instructions that correspond to read and write opera-

tions occur.

The first step in this process is to determine the number of compositions

that are visited on line 16. From there we can infer that the rest of the

167

§ 5.4. Accelerated Algorithms

compositions must be visited on line 22; we then have sufficient information

to determine the total number of iterations of each of the three loops. We

formalise these three steps in the following lemmas.

Lemma 5.10. The number of times line 16 is executed during the execution

of Algorithm 5.5 is given by t16(n) = p(n− 2).

Proof. Compositions visited on line 16 must be nonterminal because upon

reaching line 12, the condition 2x > y must hold. As x and y are the second-

last and last parts, respectively, of the composition visited on line 16, then

this composition must be nonterminal by definition. Subsequent operations

on x and y within this loop do not alter the property that 2x > y, and so all

compositions visited on line 16 must be nonterminal.

Furthermore, we also know that all compositions visited on line 22 must

be terminal. To demonstrate this fact, we note that if a1 . . . ak is the last

composition visited before we arrive at line 20, the composition visited on

line 22 must be a1 . . . ak−2〈ak−1 + ak〉. Therefore, to demonstrate that this

composition is terminal, we must show that 2ak−2 ≤ ak−1 + ak. We know

that ak−2 ≤ ak−1 ≤ ak. It follows that 2ak−2 ≤ 2ak−1, and also that 2ak−1 ≤
ak−1 + ak. Combining these two inequalities, we see that 2ak−2 ≤ 2ak−1 ≤
ak−1 +ak, and so 2ak−2 ≤ ak−1 +ak. Thus all compositions visited on line 22

must be terminal.

Then, as Algorithm 5.5 correctly visits all p(n) ascending compositions

of n (see Section 4.4), as all compositions visited on line 22 are terminal

and as all compositions visited on line 16 are nonterminal, we know that all

nonterminal compositions of n must be visited on line 16. By Corollary 5.6

there are p(n− 2) nonterminal compositions of n, and hence t16 = p(n− 2),

as required.

Lemma 5.11. The number of times line 5 is executed during the execution

of Algorithm 5.5 is given by t5(n) = p(n)− p(n− 2).

Proof. By Lemma 5.10 we know that the visit statement on line 16 is exe-

cuted p(n − 2) times. As Algorithm 5.5 correctly visits all p(n) ascending

compositions of n, then the remaining p(n) − p(n − 2) compositions must

168

§ 5.4. Accelerated Algorithms

be visited on line 22. Clearly then, line 22 (and hence line 5) is executed

p(n)− p(n− 2) times. Therefore, t5 = p(n)− p(n− 2), as required.

Lemma 5.12. The number of times line 10 is executed during the execution

of Algorithm 5.5 is given by t10(n) = p(n)− p(n− 2)− 1.

Proof. The variable k is assigned the value 2 upon initialisation, and the algo-

rithm terminates when k = 1. As the variable is only updated via increment

(line 10) and decrement (line 5) operations, we know that there must be one

more decrement operation than increments. By Lemma 5.11 we know that

there are p(n)−p(n−2) decrements, and so there must be p(n)−p(n−2)−1

increments on the variable. Therefore, t10 = p(n)− p(n− 2)− 1.

Having determined the frequency counts of the key statements in Algo-

rithm 5.5 in Lemmas 5.10, 5.11 and 5.12, we can now count the total number

of read and write operations incurred by the invocation AccelAsc(n).

Theorem 5.12. Algorithm 5.5 requires RA5.5(n) = p(n) − p(n − 2) read

operations to generate the set A(n).

Proof. Only one read operation occurs Algorithm 5.5, and this is done on

line 6. By Lemma 5.11 we know that line 5 is executed p(n)−p(n−2) times,

and it immediately follows that line 6 is executed the same number of times.

Therefore, RA5.5(n) = p(n)− p(n− 2), as required.

Theorem 5.13. Algorithm 5.5 requires WA5.5(n) = 2p(n)−1 write operations

to generate the set A(n), excluding initialisation.

Proof. Write operations are performed on lines 8, 14, 15 and 21. Lemma 5.11

shows that line 21 is executed p(n)− p(n− 2) times. From Lemma 5.12 we

know that line 8 is executed p(n)−p(n−2)−1 times. Then, by Lemma 5.10

we know that lines 14 and 15 are executed p(n − 2) times each. Summing

these contributions we get WA5.5(n) = p(n) − p(n − 2) + p(n) − p(n − 2) −
1 + 2p(n− 2) = 2p(n)− 1, as required.

Theorems 5.12 and 5.13 derive the precise number of read and write oper-

ations required to generate all p(n) partitions of n using Algorithm 5.5. This

169

§ 5.4. Accelerated Algorithms

algorithm is a considerable improvement over our basic implementation of

the succession rule, Algorithm 5.3, in two ways. Both of these improvements

are a consequence of the observations derived from the study of terminal and

nonterminal ascending compositions. Firstly, by keeping p(n− 2) of the visit

operations within the loop of lines 13–19, we significantly reduce the average

cost of a write operation. Thus, although we do not appreciably reduce the

total number of write operations involved, we ensure that 2p(n− 2) of those

writes are executed at the cost of an increment and decrement on a local

variable and the cost of a ≤ comparison of two local variables — in short,

very cheaply.

The second consequence of utilising the theory of terminal and nonter-

minal compositions is that we dramatically reduce the total number of read

operations involved. Recall that RuleAsc required 2p(n) read operations

to generate all ascending compositions of n; and Theorem 5.12 shows that

AccelAsc requires only p(n) − p(n − 2) read operations. We also reduced

the number of read operations by a factor of 2 by maintaining the value of

y between iterations of the main while loop, but this trick could equally be

applied to RuleAsc, and is only a minor improvement at any rate. The

real gain here is obtained from exploiting the block-based nature of the set

of ascending compositions, as we do not need to perform any read operations

once we have begun iterating through the nonterminal compositions within

a block.

In summary, AccelAsc should be an efficient generation algorithm, tak-

ing into consideration its quantitative behaviour, which we have studied in

detail in this subsection. This completes our development of ascending com-

position generation algorithms. We have developed a basic succession rule,

and by studying some auxiliary theory, developed a coherent means of making

the resulting algorithm more efficient. This increase in efficiency is bought

at the cost of only a modest increase in complexity of algorithmic expres-

sion. We now return to descending compositions and study a generation

algorithm commensurable with AccelAsc. This is the most efficient known

descending composition generation algorithm, and is due to Zoghbi & Sto-

jmenović [ZS98]. We analyse this algorithm in detail, and compare it with

170

§ 5.4. Accelerated Algorithms

AccelAsc in Section 5.4.3.

5.4.2 Descending Compositions

In Section 5.3.2 we derived a direct implementation of the succession rule

for descending compositions. We then analysed the cost of using this di-

rect implementation to generate all descending compositions of n, and found

that it implied an average of O(
√
n) read and write operations per parti-

tion. There are, however, several efficient algorithms to generate descending

compositions, and in this section we shall study the most efficient example.

There is one basic problem with the direct implementation of the succes-

sion rule for descending compositions (RuleDesc): most of the read and

write operations it makes are redundant. To begin with, the read opera-

tions incurred by RuleDesc in scanning the current composition to find the

rightmost non-1 value are unnecessary. As McKay [McK70] noted, we can

easily keep track of the index of the largest non-1 value between iterations,

and thereby eliminate the right-to-left scan altogether. The means by which

we can avoid the majority of the write operations is a little more subtle, and

was first noted by Zoghbi & Stojmenović [ZS98]. For instance, consider the

transition

3321111→ 33111111. (5.27)

RuleDesc implements the transition from 3321111 to 33111111 by finding

the prefix 33 and writing six copies of 1 after it, oblivious to the fact that 4

of the array indices already contain 1. Thus, a more reasonable approach is

to make a special case in the succession rule so that if dq = 2, we simply set

dq ← 1 and append 1 to the end of the composition. This observation proves

to be sufficient to remove the worst excesses of RuleDesc, as 1s are by far

the most numerous part in the partitions of n.

Zoghbi & Stojmenović’s algorithm implements both of these ideas, and

makes one further innovation to reduce the number of write operations re-

quired. By initialising the array to hold n copies of 1, we know that any index

> k must contain the value 1, and so we can save another write operation

in the special case of dq = 2 outlined above. Thus, Zoghbi & Stojmenović’s

171

§ 5.4. Accelerated Algorithms

algorithm is the most efficient example, and consequently it is the algorithm

that we shall use for our comparative analysis. Knuth developed a similar

algorithm [Knu04c, p.2]: he also noted the necessity of keeping track of the

value of q between iterations, and also implemented the special case for dq

outlined above. Knuth’s algorithm, however, does not contain the further

improvement included by Zoghbi & Stojmenović (i.e. initialising the array to

1 . . . 1 and avoiding the second write operation in the dq = 2 special case),

and therefore requires strictly more write operations than Zoghbi & Stoj-

menović’s. Zoghbi & Stojmenović’s algorithm also consistently outperforms

Knuth’s algorithm in empirical tests.

Zoghbi & Stojmenović’s algorithm is presented in Algorithm 5.6, which

we shall also refer to as AccelDesc. Each iteration of the main loop im-

plements a single transition, and two cases are identified for performing the

transition. In the conditional block of lines 8–10 we implement the special

case for dq = 2: we can see that the length of the composition is incremented,

dq is assigned to 1 and the value of q is updated to point to the new rightmost

non-1 part. The general case is dealt with in the block of lines 11–29; the

approach is much the same as that of RuleDesc, except in this case we have

the additional complexity of maintaining the value of q between iterations.

There is, unfortunately, an example of our theoretical model conflicting

with computational reality in this algorithm. In our theoretical model we

count only the read and write operations contained within the algorithm,

under the assumption that the cost of other housekeeping operations will be

constant [Kem98, §1]. If we are to take this idea to its logical conclusion, we

should do our utmost to minimise the number of read and write operations

in the algorithm, and it is here that we see the conflict between theory and

practice. If we examine lines 7 and 12 we can see that dq is read twice on

the occasions that dq 6= 2. Thus, if we were to minimise the number of read

operations, we should assign the value dq to some local variable immediately

after entering the main loop. This approach, however, proves to be less

efficient in practice, because the number of occasions on which dq = 2 is

much greater than those where it is not (as we shall see in the analysis), and

the extra assignment incurred here represents a significant time expenditure.

172

§ 5.4. Accelerated Algorithms

Algorithm 5.6 AccelDesc(n) [ZS98]

Require: n ≥ 1
1: k ← 1
2: q ← 1
3: d2 . . . dn ← 1 . . . 1
4: d1 ← n
5: visit d1

6: while q 6= 0 do
7: if dq = 2 then
8: k ← k + 1
9: dq ← 1

10: q ← q − 1
11: else
12: m← dq − 1
13: n′ ← k − q + 1
14: dq ← m
15: while n′ ≥ m do
16: q ← q + 1
17: dq ← m
18: n′ ← n′ −m
19: end while
20: if n′ = 0 then
21: k = q
22: else
23: k ← q + 1
24: if n′ > 1 then
25: q ← q + 1
26: dq ← n′

27: end if
28: end if
29: end if
30: visit d1 . . . dk
31: end while

Thus, we shall not apply this technique to minimise the number of read

operations.

173

§ 5.4. Accelerated Algorithms

Analysis

AccelDesc is a little more difficult to analyse than the algorithms we have

considered thus far, but, once again, the key to the analysis is an indexing

variable. In this instance the variable we are interested in is q. It is updated

only using increment and decrement operations, and we can use this infor-

mation to determine the total number of read and write operations incurred

by AccelDesc(n).

Lemma 5.13. The number of times line 10 is executed during the execution

of Algorithm 5.6 is given by t10(n) = p(n− 2).

Proof. The variable q points to the smallest non-1 value in d1 . . . dk, and we

have a complete descending composition in the array each time we reach

line 7. Therefore, line 10 will be executed once for every descending compo-

sition of n which contains at least one 2; and it is well known that this is

p(n− 2). Therefore, t10(n) = p(n− 2), as required.

Lemma 5.14. The number of times line 16 is executed during the execution

of Algorithm 5.6 is given by t16(n) + t25(n) = p(n− 2)− 1.

Proof. The variable q controls the termination of the algorithm. It is ini-

tialised to 1 on line 2, and the algorithm terminates when q = 0. We modify

q via increment operations on lines 16 and 25, and decrement operations

on line 10 only. Therefore, there must be one more decrement operation

than increments on q. By Lemma 5.13 there are p(n − 2) decrements per-

formed on q, and there must therefore be p(n−2)−1 increments. Therefore,

t16(n) + t25(n) = p(n− 2)− 1, as required.

Lemma 5.13 and Lemma 5.14 provide us with the information we require

to complete the analysis of Algorithm 5.6. The following theorems derive the

precise number of read and write operations that occur during the invocation

AccelDesc(n).

Theorem 5.14. Algorithm 5.6 requires RA5.6(n) = 2p(n)− p(n− 2)− 2 read

operations to generate the set D(n).

174

§ 5.4. Accelerated Algorithms

Proof. Read operations are performed on lines 7 and 12 of Algorithm 5.6.

Clearly, as all but the composition 〈n〉 are visited on line 30, line 7 is executed

p(n)−1 times. Then, as a consequence of Lemma 5.13, we know that line 12

is executed p(n) − p(n − 2) − 1 times. Therefore, the total number of read

operations is given by RA5.6(n) = 2p(n)− p(n− 2)− 2, as required.

Theorem 5.15. Algorithm 5.6 requires WA5.6(n) = p(n) +p(n−2)−2 write

operations to generate the set D(n), excluding initialisation.

Proof. After initialisation, write operations are performed on lines 9, 14, 17

and 26 of Algorithm 5.6. Line 9 contributes p(n− 2) writes by Lemma 5.13;

and similarly, line 14 is executed p(n)−p(n−2)−1 times. By Lemma 5.14 we

know that the total number of write operations incurred by lines 17 and 26

is p(n − 2) − 1. Therefore, summing these contributions we get WA5.6(n) =

p(n) + p(n− 2)− 2, as required.

Theorems 5.14 and 5.15 show that Zoghbi & Stojmenović’s algorithm

is a vast improvement on RuleDesc. Recall that RuleDesc(n) requires

approximately
∑n

x=1 p(x) read and
∑n

x=1 p(x) write operations; and we have

seen that AccelDesc(n) requires only 2p(n) − p(n − 2) read and p(n) +

p(n− 2) write operations.

Zoghbi & Stojmenović [ZS98] also provided an analysis of their algorithm

(AccelDesc), and proved that it generates partitions in constant amortised

time. We shall briefly summarise this analysis to provide some perspective

on the approach we have taken. Zoghbi & Stojmenović begin their analysis

by demonstrating that D(n,m) ≥ n2/12 for all m > 2, where D(n,m) enu-

merates the descending compositions of n in which the initial part is no more

than m. They use this result to reason that, for each dq > 2 encountered, the

total number of iterations of the internal while loop is < 2c, for some con-

stant c. Thus, since the number of iterations of the internal loop is constant

whenever dq ≥ 3 (the case for dq = 2 obviously requires constant time), the

algorithm generates descending compositions in constant amortised time.

The preceeding paragraph is not a rigorous argument proving that Ac-

celDesc is constant amortised time. It is intended only to illustrate the

difference in the approach that we have taken in this section to Zoghbi &

175

§ 5.4. Accelerated Algorithms

Stojmenović’s analysis, and perhaps highlight some of the advantages of us-

ing Kemp’s abstract model of counting read and write operations [Kem98].

By using Kemp’s model we were able to ignore irrelevant details regarding

the algorithm’s implementation, and concentrate instead on the algorithms

effect : reading and writing parts in compositions. We shall empirically eval-

uate the validity of this theoretical model in the next section, as part of

our comparison of Zoghbi & Stojmenović’s algorithm with our accelerated

ascending composition generator.

5.4.3 Comparison

This, and the previous two sections have followed the same structure. First

we present an ascending composition generator based on the general meth-

ods developed in Chapter 4 and analyse this algorithm; then we study a

descending composition generator from the literature and perform a similar

analysis; and finally we compare the two algorithms to determine which is

more efficient. The algorithms we studied in Section 5.2 and Section 5.3 may

be (correctly) criticised as being suboptimal. For example, our algorithm

RecAsc may be more efficient than its descending composition counter-

part RecDesc, but both algorithms will certainly be less efficient than any

reasonable iterative technique. In this section, however, we have studied

the most efficient known examples of ascending and descending composition

generators: our AccelAsc algorithm and Zoghbi & Stojmenović’s algo-

rithm [ZS98], AccelDesc.

We have analysed these algorithms in terms of the total number of read

and write operations required to generate all ascending and descending com-

positions of n, and deliberately ignored all other aspects of the algorithms,

following the approach advocated by Kemp [Kem98]. Using this theoretical

device we abstract away the implementation details of a particular algorithm,

in a similar spirit to counting the key-comparisons in sorting algorithms. One

advantage of this approach is that by comparing the read and write opera-

tion counts for an algorithm, we evaluate the complexity of any algorithm

utilising the same structural properties. In this section we have determined

176

§ 5.4. Accelerated Algorithms

the read and write operation counts for algorithms that generate ascending

and descending compositions, both of which use some underlying structural

properties of the compositions in question to make certain transitions more

efficient. Thus, a comparison of these operation counts should be a compari-

son of the inherent complexity of generation using these structural properties.

It may be possible to utilise other structural properties of both objects to

gain more efficient generation algorithms. There are no examples of such

algorithms in the literature, however, and so the comparison in this sub-

section is a comparison of the state-of-the-art in ascending and descending

composition generation.

Considering AccelAsc (Algorithm 5.5) first, we derived the following

numbers of read and write operations required to generate all ascending com-

positions of n, ignoring inconsequential trailing terms.

RA5.5(n) ≈ p(n)− p(n− 2) and WA5.5(n) ≈ 2p(n) (5.28)

We can see that the total number of write operations is 2p(n); i.e., the total

number of write operations is twice the total number of partitions generated.

On the other hand, the total number of read operations required is only

p(n)− p(n− 2), which, as we shall see presently, is asymptotically negligible

in comparison to p(n). The number of read operations is small because we

only require one read operation per iteration of the outer loop. Once we

have stored ak−1 in a local variable, we can then extend the composition

as necessary and visit all of the following nonterminal compositions without

needing to perform a read operation. Thus, it is the write operations that

dominate the cost of generation with this algorithm and, as we noted earlier,

the average cost of a write operation in this algorithm is quite small.

Moving on to the descending composition generator, AccelDesc (Algo-

rithm 5.6), the following read and write totals were derived (we ignore the

insignificant trailing terms in both cases).

RA5.6(n) ≈ 2p(n)− p(n− 2) and WA5.6(n) ≈ p(n) + p(n− 2) (5.29)

177

§ 5.4. Accelerated Algorithms

The total number of write operations required by this algorithm to generate

all partitions of n is p(n) + p(n − 2). Although this value is strictly less

than the write total for AccelAsc, the difference is not asymptotically

significant as p(n− 2)/p(n) tends towards 1 as n becomes large. Therefore,

we should not expect any appreciable difference between the performances

of the two algorithms in terms of the number of write operations involved.

There is, however, an asymptotically significant difference in the number of

read operations performed by the algorithms.

The total number of read operations required by AccelDesc is given by

2p(n)− p(n− 2). This expression is complicated by an algorithmic consider-

ation, where it proved to be more efficient to perform p(n)− p(n− 2) extra

read operations than to save the relevant value in a local variable. Essentially,

AccelDesc needs to perform one read operation for every iteration of the

external loop, to determine the value of dq. If dq = 2 we execute the special

case and quickly generate the next descending composition; otherwise, we

apply the general case. We cannot keep the value of dq locally because the

value of q changes constantly, and so we do not spend significant periods of

time operating on the same array indices, as we do in AccelAsc. Thus, we

must read the value of dq for every transition, and we can therefore simplify

by saying that AccelDesc(n) requires p(n) read operations.

In the interest of the fairest possible comparison between ascending and

descending compositions generation algorithms, let us therefore simplify, and

assume that any descending composition generation algorithm utilising the

same properties as AccelDesc requires p(n) read operations. We know

from (5.28) that our ascending composition generation algorithm required

only p(n)− p(n− 2) reads. We can therefore expect that an ascending com-

position generator will require p(n−2) less read operations than a descending

composition generator similar to AccelDesc. Other things being equal, we

should expect a significant difference between the total time required to gen-

erate all partitions using an ascending composition generation algorithm and

a commensurable descending composition generator.

We can gain a qualitative idea of the differences involved if we examine

the average numbers of read and write operations using the asymptotic values

178

§ 5.4. Accelerated Algorithms

of p(n). Again, to determine the average number of read and write opera-

tions required per partition generated we must divide the totals involved by

p(n). We stated earlier that the value of p(n) − p(n − 2) is asymptotically

negligible compared to p(n); we can quantify this statement using the asymp-

totic formulas for p(n). Knuth [Knu04c, p.11] provides an approximation of

p(n− 2)/p(n), which can be expressed as follows:

p(n− 2)

p(n)
≈ 1

e2π/
√

6n
. (5.30)

Considering this approximation for a moment, we can see that it quickly

approaches 1. For example, p(8)/p(10) ≈ 0.44, p(98)/p(100) ≈ 0.77 and

p(998)/p(1000) ≈ 0.92. Using this approximation, we obtain the following

estimates for the average number of read and write operations required to

generate each ascending and descending composition of n.

Reads Writes

Ascending 1− e−2π/
√

6n 2

Descending 1 1 + e−2π/
√

6n

Suppose we wished to generate all partitions of 1000. Then, using the best

known descending composition generation algorithm we would expect to

make 1 read and 1.92 write operations per partition generated. On the other

hand, if we used AccelAsc, we would expect to make only 0.08 read and 2

write operations per partition.

The qualitative behaviour of AccelAsc and AccelDesc can be seen

from their read and write tapes (Figure 5.7). Comparing the write tapes

for the algorithms, we can see that the total number of write operations is

roughly equal in both algorithms, although they follow an altogether differ-

ent spatial pattern. The read tapes for the algorithms, however, demonstrate

the essential difference between the algorithms: AccelDesc makes one read

operation for every partition generated, while the read operations for Acce-

lAsc are sparsely distributed across the tape.

179

b bbbbbbbb bbb bbbb bbbbb bbbbbb bbbbb bbb

rr r r r r r r r r r r rrrr rrr rrr r rrr rrr r rrr rrr r r rrr rrr rr rrr r r rrr rrr r rrr rrr r r r rrr rrr rr rrr r rrr rr rrr r r r rrr rrr r rrr rrr r rr rrr rr rrr r r r r rrr rrr rr rrr r rrr rr rrr r r rrr rrr r rrr rr rr

bbbb bbb bbbbb bbbb bbbb bbbb bbb bbbb bbbb bbb bbbbb bbbbb bbb bbbbb bb bbbb bbbbb bbbb bbbb bbb bbbb bbbbbb bbbbb bbbbb bbbbbb bbbbbb

r r r r r r r r r r rrrr rrr rrrr rrr rrrr rrr rrr rrrr rrr rrr rrrr r rrrrr r rrr rrrr rr rrrr r rrrrr r rrr rrrr r rrr rrrr r r rrrrrr r r rrrr r rrrrr r r rrrrrr r r r r rrrrrrr
Read (35) Write (154) (77) Read (119) Write
AccelAsc(12) p(12) = 77 AccelDesc(12)

Figure 5.7: Read and write tapes for the accelerated algorithms to generate
ascending and descending compositions. On the left we have the read and
write tapes for the ascending composition generator, Algorithm 5.5; on the
right, then, are the corresponding tapes for the descending composition gen-
erator, Algorithm 5.6. In both cases, the traces correspond to the read and
write operations carried out in generating all partitions of 12.

180

§ 5.4. Accelerated Algorithms

Empirical Comparison

We have theoretically predicted that AccelAsc (Algorithm 5.5) should be

significantly more efficient than its equivalent descending composition gen-

erator, AccelDesc (Algorithm 5.6). It is not certain, however, that these

theoretical predictions will translate into actual computational experience.

Our theoretical model ignores all considerations except the number of read

and write operations required to generate all partitions using a particular

algorithm, and it may prove that this simplification is not justified by em-

pirical evidence [Knu73]. Therefore, in this section we empirically measure

the cost of generating all partitions using both algorithms, and compare the

empirical observations with our theoretical predictions.

Up to this point we have made only qualitative predictions about the

relative efficiencies of generating ascending and descending compositions: we

have claimed that the ascending composition generator should be signifi-

cantly more efficient than the descending composition generator. Our the-

ory, however, is capable of making quantitative predictions in this regard, so

we may also establish the validity of our read-write cost model, as well as

assessing the accuracy of the qualitative predictions previously made.

Specifically, we have derived expressions to count the total number of read

write operations required to generate all partitions of n using AccelAsc and

AccelDesc. If we assume that the cost of read and write operations are

equal, we can then derive a prediction for the ratio of the total time elapsed

using both algorithms. Therefore, let E5.5(n) be the expected total running

time of AccelAsc(n), and similarly define E5.6(n) for AccelDesc(n). We

can then predict that the ratio of the running times should be equal to the

ratio of their total read and write counts. Thus, using the values of (5.28)

and (5.29), we get
E5.5(n)

E5.6(n)
=

3p(n)− p(n− 2)

3p(n)
. (5.31)

Consequently, we expect that the total amount of time required to generate

all ascending compositions of n should be a factor of p(n−2)/3p(n) less than

that required to generate all descending compositions of n. We shall put this

hypothesis to test, and see if experimental evidence supports our theoretical

181

§ 5.4. Accelerated Algorithms

predictions.

In the experiments we measured the total elapsed time required to gener-

ate all partitions of n using AccelAsc and AccelDesc. The methodology

used to measure the elapsed time is the same as explained in Section 4.4.4

— we measure five runs of each algorithm, and report the minimum of these

times. (Further measures required to address some of the more salient crit-

icisms of the empirical evaluation of algorithms are discussed Section 4.4.4,

and applied here.) We report the ratio of these times in Table 5.2, for both

the C and Java implementations of the algorithms.

Table 5.2 supports our qualitative predictions well. The theoretical anal-

ysis of ascending and descending composition generation algorithms in this

section suggests that the ascending composition generator should require

significantly less time to generate all partitions of n than its descending com-

position counterpart; and the data of Table 5.2 supports this prediction. In

the Java implementations, the ascending composition generator requires 15%

less time to generate all partitions of 100 than the descending composition

generation algorithm; in the C version, the difference is around 25%. These

differences increase as the value of n increases: when n = 135, we see that

AccelAsc requires 18% and 28% less time than AccelDesc in the C and

Java implementations, respectively.

We also made a quantitative prediction about the ratio of the time re-

quired to generate all partitions of n using AccelAsc and AccelDesc. Us-

ing the theoretical analysis, where we counted the total number of read and

write operations required by these algorithms, we can predict the expected

ratio of the time required by both algorithms. This ratio is also reported in

Table 5.2, and we can see that it is consistent with the measured ratios for

the Java and C implementations of the algorithms. In the case of the Java

implementation, the theoretically predicted ratios are too optimistic, sug-

gesting that the model of counting only read and write operations is a little

overly simplistic in this case. The correspondence between the measured and

predicted ratios in the C implementation is much closer, as we can see from

Table 5.2. In both cases there is a strong positive correlation — in excess

of 0.9 — between the predicted and measured ratios, demonstrating that a

182

§ 5.4. Accelerated Algorithms

n p(n) Java C Theoretical

100 1.91× 108 0.85 0.77 0.74
105 3.42× 108 0.85 0.77 0.74
110 6.07× 108 0.84 0.75 0.74
115 1.06× 109 0.84 0.75 0.73
120 1.84× 109 0.83 0.75 0.73
125 3.16× 109 0.83 0.74 0.73
130 5.37× 109 0.83 0.74 0.73
135 9.04× 109 0.82 0.74 0.73

rJava = 0.9891 rC = 0.9321

Table 5.2: Empirical analysis of accelerated ascending and descending com-
position generation algorithms. The ratio of the time required to generate all
partitions of n using AccelAsc and AccelDesc is given: measured ratios
for implementations in the Java and C languages as well as the theoretically
predicted ratio are shown.

simple linear transformation can be applied to the predictions to obtain the

measured values [Edw84, ch.3].

5.4.4 Other Algorithms

The algorithms we have studied in this chapter all use the sequence repre-

sentation, but many published algorithms for generating all partitions utilise

alternative representations — see Table 2.2 (p.35). Many of the non-sequence

representation algorithms are constant amortised time; but not all constant

amortised time algorithms are equally efficient. To provide a reference for

the relative efficiency of the algorithms we have developed, we shall conclude

this section with a brief empirical analysis. In this analysis we compare the

most efficient example of algorithms to generate all partitions of n in the se-

quence, multiplicity and part-count representations (see Section 2.3.1) with

our ascending composition generator, AccelAsc (Algorithm 5.5).

Fenner & Loizou’s algorithm [FL80, FL81], which generates descending

compositions in lexicographic order, is our exemplar for algorithms that gen-

erate all partitions in the multiplicity representation. Fenner & Loizou im-

183

§ 5.4. Accelerated Algorithms

proved the efficiency of the basic multiplicity representation generation al-

gorithm (see, for example, Reingold, Nievergelt & Deo [RND77, p.193]), by

identifying a total of twelve individual cases in the lexicographic succession

rule we studied in Section 5.3.2. The algorithm is therefore rather complex:

when implemented using the standard Java conventions [JCC] it requires

more than ninety lines of code. (When implemented in a similar manner,

AccelAsc requires around thirty lines of code.)

The representative for the part-count representation is Klimko’s algo-

rithm [Kli73], as presented by Knuth [Knu04c, ex.5]. This algorithm gener-

ates descending compositions in lexicographic order, and is also rather com-

plex to implement (more than seventy lines of code using the Java coding

conventions [JCC]). We also present three algorithms to generate descend-

ing compositions in the sequence representation: Zoghbi & Stojmenović’s

algorithms to generate descending compositions in lexicographic (ZS2) and

reverse lexicographic (ZS1) orders [ZS98], and Knuth’s descending composi-

tion generation algorithm [Knu04c, p.2] (TAOCP).

In each case we generated all partitions of n using the particular algo-

rithm and measured the elapsed time in using the methodology discussed in

Section 4.4.4. It was necessary in the C versions of these algorithms to im-

plement the array access instructions using pointers, because Klimko’s and

Fenner & Loizou’s algorithms make reference to constant array indices (e.g.

a1). Since the C compiler automatically converts such constant array refer-

ences into pointers, the algorithms are not fairly compared if we use direct

implementations. By hand-coding each of the algorithms to use pointers,

we can redress this imbalance, and the ratios agree reasonably well with the

Java versions (for which no such problems arise).

In Table 5.3 we report the results of these experiments; as usual, we

report the amount of time taken by our ascending composition generation

algorithm divided by the time taken by the algorithm in question. We can

see that, for example, AccelAsc requires only 60% of the time required by

Fenner & Loizou’s algorithm (FL) to generate all partitions of 130. Fenner

& Loizou’s algorithm is the most efficient known example of an algorithm to

generate partitions in the multiplicity representation. In Zoghbi & Stojmen-

184

§ 5.5. Summary

n = 77 90 95 109 115 130
p(n) = 1.06×107 5.66×107 1.05×108 5.42×108 1.06×109 5.37×109

ZS1 J 0.88 0.85 0.85 0.84 0.83 0.83
C 0.61 0.63 0.63 0.62 0.62 0.61

TAOCP J 0.81 0.78 0.77 0.76 0.76 0.75
C 0.61 0.61 0.61 0.60 0.59 0.58

ZS2 J 0.64 0.63 0.64 0.64 0.64 0.63
C 0.47 0.48 0.49 0.48 0.48 0.48

Klimko J 0.61 0.60 0.60 0.60 0.60 0.59
C 0.44 0.46 0.47 0.47 0.47 0.47

FL J 0.63 0.61 0.60 0.59 0.59 0.58
C 0.56 0.57 0.59 0.58 0.58 0.58

Table 5.3: Empirical comparison of major partition generation algorithms in
the various representations. Values reported are the amount of time taken by
the accelerated ascending composition generator to generate a particular set
of partitions divided by the time taken by the specified algorithm to generate
the same set of partitions.

ović’s empirical evaluation [ZS98], it was by far the most efficient multiplicity

representation algorithm tested. For each of the other algorithms in Table 5.3

— Zoghbi & Stojmenović’s algorithms [ZS98], Klimko’s algorithm [Kli73] and

Knuth’s The Art of Computer Programming algorithm [Knu04c, p.2] — Ac-

celAsc requires significantly less time to generate all partitions of n.

5.5 Summary

Having reached the end of this chapter on relative efficiencies of ascending and

descending compositions as the encoding scheme for generating partitions,

let us review the evidence we have accumulated, and attempt to draw some

conclusions. In summary, for each of the usage scenarios we have considered

— the recursive generation, direct rule-based generation, and efficiency ori-

ented generation — there is a compelling efficiency advantage to encoding

partitions as ascending, rather than descending, compositions.

185

§ 5.5. Summary

To recapitulate the main results of this chapter, we studied recursive gen-

eration of partitions in Section 5.2 and established that a simple recursive

algorithm to generate ascending compositions requires approximately half

the time required to generate all partitions using the most efficient known

descending compositions generation algorithm. Then, in Section 5.3 we ex-

amined the succession rules for ascending and descending compositions, and

demonstrated that there is a clear choice between the rules, if generating

all partitions is our goal. The ascending composition succession rule implies

a constant amount of work per partition generated, while the descending

composition succession rule implies O(
√
n) time per partition. Finally, in

Section 5.4, we compared the most efficient known examples of ascending

and descending composition generation algorithms, and established that the

ascending composition generation scheme is much more efficient.

186

Chapter 6

Conclusions and Future Work

In this chapter we conclude the dissertation by summarising the defence of

our thesis in Section 6.1 and briefly examining some possibilities for future

work in Section 6.2.

6.1 Thesis Defence

The thesis we set out to defend was the conjunction of four subtheses. We

shall attend to each of these in turn and briefly summarise its defence.

Subthesis 1. Important classes of restricted partition can be expressed con-

cisely by a function σ : Z+ → Z+.

Defence. In Chapter 3 we developed the basic theory required for the inter-

part restricted compositions framework. We demonstrated in Section 3.1.3

that, for example, the unrestricted partitions are represented by the func-

tion σ(x) = x; the partitions into distinct parts by σ(x) = x + 1; and the

Rogers-Ramanujan partitions by σ(x) = x+ 2. Each of these examples of re-

stricted partition has been the subject of extensive study for many years, and

many more classes may be defined within the framework. The representation

format is clearly concise.

Subthesis 2. It is possible to define an efficient algorithm to enumerate

partitions with restrictions expressed by such a function.

187

§ 6.1. Thesis Defence

Defence. In Section 3.2 we developed a recurrence equation to enumerate in-

terpart restricted compositions. We proved the correctness of this recurrence

in Theorem 3.4 and used it to define a dynamic programming enumeration

algorithm. This enumeration algorithm requires O(N2) time and space to

compute Cσ(n,m) for all 1 ≤ m ≤ n ≤ N . There is no more efficient known

method to enumerate restricted classes of partitions in general [SS96].

Subthesis 3. It is possible to efficiently generate all restricted partitions

where the corresponding restriction function is nondecreasing.

Defence. In Chapter 4 we developed, and proved the correctness of, gener-

ation algorithms for interpart restricted compositions. Each of these algo-

rithms requires that the restriction function be nondecreasing. We proved

that these algorithms generate interpart restricted compositions in constant

amortised time in Section 4.2.3, Section 4.3.3 and Section 4.4.3. Constant

amortised time performance is considered to be the “ultimate goal in effi-

ciency” [MM05] for combinatorial generation algorithms.

Subthesis 4. It is possible to define algorithms to generate ascending compo-

sitions that are more efficient than the most efficient known commensurable

algorithms to generate descending compositions.

Defence. In Chapter 5 we compared concrete instantiations of our interpart

restricted generation algorithms with commensurable descending composi-

tion generation algorithms from the literature. In Section 5.2.3 we compared

our recursive ascending composition generation algorithm with Ruskey’s re-

cursive descending composition generator. We proved that while the ascend-

ing composition generator required exactly p(n) invocations to generate all

partitions of n, Ruskey’s algorithm required p(n)+p(n−1). We demonstrated

that this is an asymptotically significant difference, since p(n)/p(n−1) tends

towards 1 as n becomes large. Therefore, it is possible to define a recursive

ascending composition generator that is more efficient than the most efficient

known commensurable descending composition generator.

In Section 5.3.3 we compared direct, unmeliorated implementations of

the succession rules for ascending and descending compositions. We demon-

strated that the ascending composition generation algorithm required 2p(n)

188

§ 6.2. Future Work

read and 2p(n) write operations, and the descending composition generation

method required
∑n

x=1 p(x) read and
∑n

x=1 p(x) write operations to generate

all partitions of n. It follows that the average number of read and write op-

erations required to generate an ascending composition is constant, whereas

the average number of read and write operations required to generate a de-

scending composition grows with
√
n, using direct implementations of the

respective succession rules. Therefore, it is possible to define a direct im-

plementation of the succession rule for ascending compositions that is more

efficient than the most efficient known commensurable descending composi-

tion generator.

In Section 5.4.3 we compared the most efficient known algorithms to

generate ascending and descending compositions. The ascending composi-

tion generator used was a concrete instantiation of our accelerated algorithm

to generate interpart restricted compositions, and the descending composi-

tion generator was Zoghbi & Stojmenović’s algorithm. We demonstrated,

theoretically and empirically, that the ascending composition generator was

significantly more efficient than Zoghbi & Stojmenović’s descending compo-

sition generator. Therefore, it is possible to define an algorithm to generate

ascending composition that is more efficient than the most efficient known

descending composition generator.

6.2 Future Work

In this dissertation we have been chiefly concerned with justifying the usage

of ascending compositions to encode partitions for systematic generation.

The convention of explicitly defining a partition as a descending composition

is a deeply established one, and it was necessary to thoroughly examine its

fundamental implications. The decision to encode partitions as ascending

compositions is not a frivolous one, and conventions should not be altered

without good reason. For this reason, we have concentrated on material

directly relevant to defending the usage of ascending compositions. Topics

peripheral to this issue have been examined but not expanded upon, and

many interesting possibilities for future work exist. In this section we present

189

§ 6.2. Future Work

a brief outline of some avenues for future research that seem promising.

A Gray Code

We have concentrated exclusively on the lexicographic order-

4

3

2

1

1

1

11

7

8

9

4

3

10

6

7

ing for our generation algorithms in this dissertation. As we

saw in Section 2.1.2, there is one other ordering commonly

used in combinatorial generation, known as the Gray code,

or minimal change orders. Gray codes are not unique, and

are not defined in a rigorous fashion across different objects:

the term is loosely taken to mean an ordering in which suc-

cessive objects differ by some small pre-specified amount.

Savage has defined a Gray code over partitions [Sav89] where successive

partitions differ by adding 1 to one part and subtracting 1 from another.

Subsequent work extended Savage’s Gray code over partitions to operate on

partitions into distinct parts, and partitions where certain congruence con-

ditions on the parts are met [RSW95]. We propose a different sort of Gray

code here, where we limit not the amount of change to particular parts, but

instead limit the number of parts which are changed. In the figure above

we show the Rogers-Ramanujan partitions of 11 arranged in this new Gray

code. The ordering obtained is easily found by modifying any of the gener-

ation algorithms. In the figure, we can see that no more than three parts

are modified in any one transition, and this would appear to be a property

of the Gray code in general. This property then ensures that the generation

algorithms for interpart restricted compositions are loopless and so the delay

between successive visits is fixed. The fact that a maximum of three parts

change on successive iterations also allows consumer procedures to reduce

the amount of work performed at each visit, thereby significantly improving

the efficiency of the overall process of generation and consumption. Defining

such algorithms, developing a succession rule for the Gray code and proving

that it has the required properties for all instances of the restriction function

is a challenging possibility for future work.

190

§ 6.2. Future Work

Optimum Generation of Partitions

We have discussed the relative efficiency of generating ascending and de-

scending compositions at length. We have not considered, however, the con-

cept of optimum algorithms: algorithms that make the fewest possible read

and write operations to generate all ascending or descending compositions

of n. Computing the optimum number of write operations is not a difficult

concept: there is a perfect trajectory through the write-tape for ascending

and descending compositions (this value does not appear to correspond to

any known combinatorial quantity, however). A much more difficult prob-

lem is determining what the least possible number of read operations is. It

seems likely that optimum write paths for generation algorithms may only be

bought at the expense of extra read operations, and so there is an interesting

concept of an optimum balance which may be found.

Generating Restricted Compositions

Numerous open problems exist with regard to generating classes of composi-

tion that do not correspond to partitions. For example, no efficient algorithm

is known to generate compositions into odd parts [Gri00], compositions with

no occurrence of a particular value [CH03b], (1, k)-compositions [CH03a],

compositions with parts drawn from some pre-specified set [HM04], compo-

sitions with a specified number of rises, levels and drops [HCG03] or Carlitz

compositions [KP98]. Generating restricted compositions is far more chal-

lenging than generating partitions as the ordering we enforce to mimic the

unsortedness requirement greatly facilitates the generation process. Thus,

defining a constant amortised time algorithm to generate compositions into

distinct parts would be a remarkable result.

Enumerating Interpart Restricted Compositions

There are many aspects of Chapter 4 that can be extended. One possibility is

a general asymptotic formula for interpart restricted compositions. Asymp-

totic formulas would appear to be known only for the instances σ(x) = 1,

σ(x) = 2, σ(x) = x and σ(x) = x + 1. Perhaps using this information an

191

§ 6.2. Future Work

asymptotic formula parameterised by the restriction function would be pos-

sible. A more realistic problem is to develop a generating function for the

interpart restricted compositions, which may be derived from the recurrence

relations provided in Section 3.2.

Another interesting problem that has arisen is to find a general relation-

ship between the terminal interpart restricted compositions of n and the total

number of interpart restricted compositions of n. We proved that the num-

ber of terminal ascending compositions of n is p(n)− p(n− 2), and it is not

difficult to derive the relationship for certain other simple instances of the

framework. In general, however, there would not appear to be any obvious

relationship between Tσ(n) and Cσ(n). It would be an interesting problem

to prove (or disprove) that such a relationship exists.

Nonsquashing Interpart Restricted Compositions

A topical class of restricted partition from the literature are the

��

��

��

��

����

4

3

2

1 non-squashing partitions of a given number [SS05]. Suppose that

we have boxes labelled with positive integers. A box with label

j weighs j grams and can support j grams in total. We wish

to build stacks of boxes in such a way as to ensure that no box

is squashed by the weight of the boxes above it. On the right

we see an example of a squashed partition, since box 4 cannot

support the 6 grams stacked upon it. The problem is then to

count (or generate) the stacks of boxes with total weight n grams which are

non-squashing. We can define the non-squashing partitions more precisely.

Each stack of boxes is represented by a composition n = a1 + · · ·+ ak where

a1 + · · · + aj ≤ aj+1 for 1 ≤ j < k [SS05]. We can modify Algorithm 4.1

to allow us generate partitions of this class by keeping track of the sum of

the parts assigned so far and determining if the next assignment will squash

any of these values. It is possible to define the algorithm such that the

constant amortised time property is maintained. We can then also generate

non-squashing partitions into distinct parts [RSC04], non-squashing Göllnitz-

Gordon partitions, and so forth. Determining the combinatorial properties of

192

§ 6.2. Future Work

non-squashing interpart restricted compositions is an interesting possibility

for future work.

Restricted σ-Chain Length

Gordon & Ono [GO97] studied the partitions of n where no parts are mul-

tiples of r. The number of such partitions is also equal to the number of

partitions with no more than r − 1 copies of any part [Hon85, p.68], and

it is this class of partition we are concerned with here. Given a compo-

sition a = a1 . . . ak interpart restricted by σ, define a σ-chain in a as a

sequence al . . . at such that σ(aj) = aj+1 for l ≤ j < t. For example, if we let

σ(x) = x+ [x even] the composition

2 + 3 + 3 + 3 + 3 + 4 + 6

of 24 contains one σ-chain of length 4 (3+3+3+3) and one σ-chain of length

2 (2+3). Alladi & Berkovich [AB05] studied Göllnitz-Gordon partitions with

chains which they defined as “a maximal string of parts differing by exactly

2”, and the notion of σ-chains just defined is a generalisation of this. Other

notions such as generalising p-regular partitions [All97, §7] also present an

interesting possibility for future work.

193

Bibliography

[AB89] George E. Andrews and Rodney J. Baxter. A motivated proof of

the Rogers-Ramanujan identities. The American Mathematical

Monthly, 96(5):401–409, May 1989.

[AB05] Krishnaswami Alladi and Alexander Berkovich. Göllnitz-Gordon

partitions with weights and parity conditions. In T. Aoki, S.

Kanemitsu, M. Nakahara et al., editor, Zeta functions topology

and quantum physics. Springer Verlag, 2005.

[Act94] Alfred Arthur Actor. Infinite products, partition functions,

and the Meinardus theorem. Journal of Mathematical Physics,

35(11):5749–5764, November 1994.

[AE04] George E. Andrews and Kimmo Eriksson. Integer Partitions.

Cambridge University Press, 2004.

[AG95] Krishnaswami Alladi and Basil Gordon. Schur’s partition theo-

rem, companions, refinements and generalizations. Transactions

of the American Mathematical Society, 347(5):1591–1608, May

1995.

[Akl81] Selim G. Akl. A comparison of combination generation meth-

ods. ACM Transactions on Mathematical Software, 7(1):42–45,

March 1981.

[Ald69] H. L. Alder. Partition identities — from Euler to the present.

The American Mathematical Monthly, 76(7):733–746, August-

September 1969.

194

BIBLIOGRAPHY

[All97] Krishnaswami Alladi. Partition identities involving gaps and

weights. Transactions of the American Mathematical Society,

349(12):5001–5019, December 1997.

[All99] Krishnaswami Alladi. A variation on a theme of Sylvester — a

smoother road to Göllnitz’s (big) theorem. Discrete Mathemat-

ics, 196(1–3):1–11, February 1999.

[And69] George E. Andrews. A general theorem on partitions with differ-

ence conditions. American Journal of Mathematics, 91(1):18–24,

January 1969.

[And76] George E. Andrews. The Theory of Partitions. Encyclopedia

of Mathematics and its Applications. Addison-Wesley, London,

1976.

[And88] George E. Andrews. J.J. Sylvester, Johns Hopkins and par-

titions. In A Century of Mathematics in America, volume 1,

pages 21–40. American Mathematical Society, Providence, R.I.,

1988.

[And05] George E. Andrews. Partitions. In History of Combinatorics,

volume 1. To appear, 2005.

[AO01] Scott Ahlgren and Ken Ono. Addition and counting: The arith-

metic of partitions. Notices of the AMS, 48(9):978–984, October

2001.

[AS81] Milton Abramowitz and Irene A. Stengun, editors. Handbook of

Mathematical Functions with formulas, graphs and mathematical

tables. Basil Blackwell, Oxford, 1981.

[AS93] Selim G. Akl and Ivan Stojmenović. Parallel algorithms for gen-

erating integer partitions and compositions. Journal of Com-

binatorial Mathematics and Combinatorial Computing, 13:107–

120, 1993.

195

BIBLIOGRAPHY

[AS96] Selim G. Akl and Ivan Stojmenović. Generating t-ary trees in

parallel. Nordic Journal of Computing, 3(1):63–71, Spring 1996.

[BBGP04] Silvia Bacchelli, Elena Barcucci, Elisabetta Grazzini, and Elisa

Pergola. Exhaustive generation of combinatorial objects by

ECO. Acta Informatica, 40(8):585–602, July 2004.

[BC05] Edward A. Bender and E. Rodney Canfield. Locally restricted

compositions i. Restricted adjacent differences. The Electronic

Journal of Combinatorics, 12(1), November 2005. R57.

[Bec64] Edwin F. Beckenbach, editor. Applied Combinatorial Mathemat-

ics. Wiley, New York, 1964.

[BER76] James R. Bitner, Gideon Ehrlich, and Edward M. Reingold. Effi-

cient generation of the binary reflected gray code and its applica-

tions. Communications of the ACM, 19(9):517–521, September

1976.

[BH80] Terry Beyer and Sandra Mitchell Hedetniemi. Constant time

generation of rooted trees. SIAM Journal on Computing,

9(4):706–712, November 1980.

[Bha99] P. C. P. Bhatt. An interesting way to partition a number. In-

formation Processing Letters, 71(3-4):141–148, August 1999.

[BM67] P. Bratley and J. K. S. McKay. Algorithm 313: Multi-

dimensional partition generator. Communications of the ACM,

10(10):666, October 1967.

[BM98] Alexander Berkovitch and Barry M. McCoy. Rogers-Ramanujan

identities: A century of progress from mathematics to physics.

In Documenta Mathematica Extra Volume ICM III, pages 163–

172, 1998.

[BME97a] Mireille Bousquet-Mélou and Kimmo Eriksson. Lecture hall par-

titions. The Ramanujan Journal, 1(1):101–111, January 1997.

196

BIBLIOGRAPHY

[BME97b] Mireille Bousquet-Mélou and Kimmo Eriksson. Lecture hall par-

titions 2. The Ramanujan Journal, 1(2):165–185, January 1997.

[BMSW54] Robert L. Bivins, N. Metropolis, Paul R. Stein, and Mark B.

Wells. Characters of the symmetric groups of degree 15 and 16.

Mathematical Tables and Other Aids to Computation, 8(48):212–

216, October 1954.

[Bón02] Miklós Bóna. A Walk Through Combinatorics: An Introduction

to Enumeration and Graph Theory. World Scientific Publishing,

2002.

[Bón04] Miklós Bóna. Combinatorics of Permutations. CRC Press, 2004.

[Boy05] John M. Boyer. Simple constant amortized time generation of

fixed length numeric partitions. Journal of Algorithms, 54(1):31–

39, January 2005.

[BR90] Bruce Bauslaugh and Frank Ruskey. Generating alternating per-

mutations lexicographically. BIT, 30(1):17–26, 1990.

[Bry73] Thomas Brylawski. The lattice of integer partitions. Discrete

Mathematics, 6:201–219, 1973.

[BS73] T. Beyer and D. F. Swinehart. Algorithm 448: Number of

multiply restricted partitions. Communications of the ACM,

16(6):379, June 1973.

[BS94] Mounir Belbaraka and Ivan Stojmenović. On generating B-trees

with constant average delay and in lexicographic order. Infor-

mation Processing Letters, 49(1):27–32, January 1994.

[BS97] Tiffany M. Barnes and Carla D. Savage. Efficient generation of

graphical partitions. Discrete Applied Mathematics, 78(1–3):17–

26, October 1997.

197

BIBLIOGRAPHY

[BS05] Anders Björner and Richard P. Stanley. A combinatorial mis-

cellany. http://www.math.kth.se/~bjorner/files/CUP.ps,

2005. To appear in L’Enseignement Mathématique.

[Cas04] Nello Castellini. Four Color Conjecture. Xlibris, 2004.

[Cay76] Arthur Cayley. Theorem on partitions. Messenger of Mathe-

matics, 5:188, 1876.

[CH03a] Phyllis Chinn and Silvia Heubach. (1, k)-compositions. Con-

gressus Numerantium, 164:183–194, 2003.

[CH03b] Phyllis Chinn and Silvia Heubach. Compositions of n with no

occurrence of k. Congressus Numerantium, 164:33–51, 2003.

[CH03c] Phyllis Chinn and Silvia Heubach. Integer sequences related to

compositions without 2s. Journal of Integer Sequences, 6, 2003.

Article 03.2.3.

[Cha02] Charalambos A. Charalambides. Enumerative Combinatorics.

CRC Press, 2002.

[CK05] Thomas Colthurst and Michael Kleber. A Gray path on binary

partitions. To Appear, 2005.

[CL97] William Y. C. Chen and James D. Louck. Necklaces, MSS se-

quences, and DNA sequences. Advances in Applied Mathematics,

18(1):18–32, January 1997.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.

Introduction to algorithms. The MIT Press, 1990.

[Com55] Stig Comét. Notations for partitions. Mathematical Tables and

Other Aids to Computation, 9(52):143–146, October 1955.

[Com74] Louis Comtet. Advanced combinatorics: the art of finite and

infinite expansions. Dordrecht Reidel, rev. and enlarged edition,

1974.

198

BIBLIOGRAPHY

[CRS+00] Kevin Cattell, Frank Ruskey, Joe Sawada, Michaela Serra, and

C. Robert Miers. Fast algorithms to generate necklaces, unla-

beled necklaces, and irreducible polynomials over GF(2). Jour-

nal of Algorithms, 37(2):267–282, November 2000.

[CS04] Sylvie Corteel and Carla D. Savage. Partitions and compositions

defined by inequalities. The Ramanujan Journal, 8(3):357–381,

September 2004.

[CT71] M. W. Coleman and M. S. Taylor. Algorithm 403: Circular

integer partitioning. Communications of the ACM, 14(1):48,

January 1971.

[DD99] Thomas P. Dence and Joseph B. Dence. Elements of the Theory

of Numbers. Elsevier, 1999.

[Dés02] P. Désesquelles. Calculation of the number of partitions with

constraints on the fragment size. Physical Review C (Nuclear

Physics), 65(3):034603, March 2002.

[Dic52] Leonard E. Dickson. History of the theory of numbers, volume

II, Diophantine Analysis, chapter 3. Chelsea, New York, 1952.

[dM97] Abraham de Moivre. A method of raising an infinite multinomial

to any given power, or extracting any given root of the same.

Philosophical Transactions, 19(230):619–625, 1697.

[Edw84] Allen L. Edwards. An Introduction to Linear Regression and

Correlation. W. H. Freeman and Company, second edition, 1984.

[Ehr73a] Gideon Ehrlich. Algorithm 466: Four combinatorial algorithms.

Communications of the ACM, 16(11):690–691, November 1973.

[Ehr73b] Gideon Ehrlich. Loopless algorithms for generating permu-

tations, combinations, and other combinatorial configurations.

Journal of the ACM, 20(3):500–513, July 1973.

199

BIBLIOGRAPHY

[Er88] M. C. Er. A simple algorithm for generating non-regular trees in

lexicographic order. The Computer Journal, 31(1):61–64, Febru-

ary 1988.

[ER03] Scott Effler and Frank Ruskey. A CAT algorithm for generating

permutations with a fixed number of inversions. Information

Processing Letters, 86(2):107–112, April 2003.

[FH98] Shui Feng and Fred M. Hoppe. Large deviation principles for

some random combinatorial structures in population genetics

and Brownian motion. Annals of Applied Probability, 8(4):975–

994, November 1998.

[Fin03] Steven R. Finch. Mathematical Constants. Cambridge Univer-

sity Press, 2003.

[FL80] Trevor I. Fenner and Georghois Loizou. A binary tree represen-

tation and related algorithms for generating integer partitions.

The Computer Journal, 23(4):332–337, 1980.

[FL81] Trevor I. Fenner and Georghois Loizou. An analysis of two re-

lated loop-free algorithms for generating integer partitions. Acta

Informatica, 16:237–252, 1981.

[FL83] Trevor I. Fenner and Georghois Loizou. Tree traversal related

algorithms for generating integer partitions. SIAM Journal on

Computing, 12(3):551–564, August 1983.

[FNP06] Philippe Flajolet, Markus Nebel, and Helmut Prodinger. The

scientific works of Rainer Kemp (1949–2004). Theoretical Com-

puter Science, 355(3):371–381, April 2006.

[Ful97] William Fulton. Young Tableaux: With Applications to Repre-

sentation Theory and Geometry. Cambridge University Press,

1997.

200

BIBLIOGRAPHY

[Ful00] Jason Fulman. The Rogers-Ramanujan identities, the finite gen-

eral linear groups, and the Hall-Littlewood polynomials. Pro-

ceedings of the American Mathematical Society, 128(1):17–25,

2000.

[FZC94] Philippe Flajolet, Paul Zimmerman, and Bernard Van Cutsem.

A calculus for the random generation of labelled combinato-

rial structures. Theoretical Computer Science, 132(1–2):1–35,

September 1994.

[GH99] Siegfried Grossmann and Martin Holthaus. From number theory

to statistical mechanics: Bose–Einstein condensation in isolated

traps. Chaos, Solitons & Fractals, 10(4–5):795–804, April 1999.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-

sides. Design patterns: elements of reusable object-oriented soft-

ware. Addison-Wesley, 1995.

[GJ04] Ian P. Goulden and David M. Jackson. Combinatorial Enumer-

ation. Courier Dover Publications, 2004.

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Con-

crete Mathematics. Addison-Wesley, Reading, Massachusetts,

second edition, 1994.

[GLW82] Udai Gupta, D. T. Lee, and C. K. Wong. Ranking and unrank-

ing of 2-3 trees. SIAM Journal on Computing, 11(3):582–590,

August 1982.

[GLW83] Udai I. Gupta, D. T. Lee, and C. K. Wong. Ranking and un-

ranking of B-trees. Journal of Algorithms, 4(1):51–60, March

1983.

[GO97] Basil Gordon and Ken Ono. Divisibility of certain partition func-

tions by powers of primes. The Ramanujan Journal, 1(1):25–35,

January 1997.

201

BIBLIOGRAPHY

[Gol93] Leslie A. Goldberg. Efficient algorithms for listing combinatorial

structures. Cambridge University Press, 1993.

[Gri00] Ralph P. Grimaldi. Compositions with odd summands. Con-

gressus Numerantium, 142:113–127, December 2000.

[Gri01] Ralph P. Grimaldi. Compositions without the summand 1. Con-

gressus Numerantium, 152:33–43, 2001.

[GS96] Ira M. Gessel and Richard P. Stanley. Algebraic enumeration.

In R. L. Graham, M. Grötschel, and L. Lovász, editors, Hand-

book of Combinatorics, volume 2, pages 1021–1062. MIT Press,

Cambridge, MA, USA, 1996.

[Har40] Godfrey H. Hardy. Ramanujan’s work on partitions. In Ra-

manujan: twelve lectures on subjects suggested by his life and

work, chapter 6, pages 83–100. Cambridge University Press,

Cambridge, 1940.

[Har66] Godfrey H. Hardy. Asymptotic formulae in combinatory anal-

ysis. In Collected papers of G.H. Hardy: including joint papers

with J.E. Littlewood and others edited by a committtee appointed

by the London Mathematical Society, volume 1, pages 265–273.

Clarendon Press, Oxford, 1966.

[HCG03] Silvia Heubach, Phyllis Chinn, and Ralph P. Grimaldi. Rises,

levels, drops and “+” signs in compositions: Extensions of a pa-

per by Alladi and Hoggatt. The Fibonacci Quarterly, 41(3):229–

239, June-July 2003.

[Hic74] D. R. Hickerson. A partition identity of the Euler type.

The American Mathematical Monthly, 81(6):627–629, June-July

1974.

[HM04] Silvia Heubach and Toufik Mansour. Compositions of n with

parts in a set. Congressus Numerantium, 168:127–143, 2004.

202

BIBLIOGRAPHY

[HO61] L. Hellerman and S. Ogden. Algorithm 72: Composition gener-

ator. Communications of the ACM, 4(11):498, November 1961.

[Hon85] Ross Honsberger. Mathematical Gems III. Number 9 in Dolciani

Mathematical Expositions. Mathematical Association of Amer-

ica, 1985.

[HS74] Ellis Horowitz and Sartaj Sahni. Computing partitions with

applications to the knapsack problem. Journal of the ACM,

21(2):277–292, April 1974.

[HW54] Godfrey H. Hardy and Edward M. Wright. An introduction to

the theory of numbers. Clarendon, Oxford, 3rd edition, 1954.

[HY97] H. K. Hwang and Y. N. Yeh. Measures of distinctness for random

partitions and compositions of an integer. Advances in Applied

Mathematics, 19(3):378–414, October 1997.

[JCC] Code conventions for the Java programming language. http:

//java.sun.com/docs/codeconv/.

[JR76] K. R. James and W. Riha. Algorithm 28: Algorithm for gener-

ating graphs of a given partition. Computing, 16:153–161, 1976.

[Kem98] Rainer Kemp. Generating words lexicographically: An average-

case analysis. Acta Informatica, 35(1):17–89, January 1998.

[Kin78] J. F. C. Kingman. Random partitions in population genetics.

Proceedings of the Royal Society of London. Series A, Mathe-

matical and Physical Sciences, 361(1704):1–20, May 1978.

[KKZL05] Anna Kubasiak, Jaros law K. Korbicz, Jakub Zakrzewski, and

Maciej Lewenstein. Fermi-Dirac statistics and the number the-

ory. Europhysics Letters, 72(4):506–512, 2005.

[Kli73] Eugene M. Klimko. An algorithm for calculating indices in Fàa

Di Bruno’s formula. BIT, 13(1):38–49, 1973.

203

BIBLIOGRAPHY

[Kli82] Paul Klingsberg. A gray code for compositions. Journal of

Algorithms, 3(1):41–44, 1982.

[Knu72] Donald E. Knuth. Mathematical analysis of algorithms. In

Proceedings of IFIP Congress 71 (Amsterdam: North Holland),

pages 19–27, 1972. Reprinted in his Selected Papers on the Anal-

ysis of Algorithms (2000), 1–18.

[Knu73] Donald E. Knuth. The dangers of computer science theory. In

Logic, Methodology and Philosophy of Science 4 (Amsterdam:

North-Holland), pages 189–195, 1973. Reprinted in his Selected

Papers on the Analysis of Algorithms (2000), 19–26.

[Knu94] Donald E. Knuth. The Stanford GraphBase: a platform for

combinatorial computing. Addison-Wesley, 1994.

[Knu04a] Donald E. Knuth. Generating all combinations, 2004. Pre-

fascicle 3A of The Art of Computer Programming, A draft of sec-

tion 7.2.1.3. http://www-cs-faculty.stanford.edu/~knuth/

fasc3a.ps.gz.

[Knu04b] Donald E. Knuth. Generating all n-tuples, 2004. Pre-fascicle

2A of The Art of Computer Programming A draft of sec-

tion 7.2.1.1. http://www-cs-faculty.stanford.edu/~knuth/

fasc2a.ps.gz.

[Knu04c] Donald E. Knuth. Generating all partitions, 2004. Pre-

fascicle 3B of The Art of Computer Programming, A draft

of sections 7.2.1.4–5 http://www-cs-faculty.stanford.edu/

~knuth/fasc3b.ps.gz.

[Knu04d] Donald E. Knuth. Generating all permutations, 2004. Pre-

fascicle 2B of The Art of Computer Programming, A draft of sec-

tion 7.2.1.2. http://www-cs-faculty.stanford.edu/~knuth/

fasc2b.ps.gz.

204

BIBLIOGRAPHY

[Knu04e] Donald E. Knuth. Generating all trees, 2004. Pre-fascicle

4A of The Art of Computer Programming, A draft of sec-

tion 7.2.1.6. http://www-cs-faculty.stanford.edu/~knuth/

fasc4a.ps.gz.

[Knu04f] Donald E. Knuth. History of combinatorial generation, 2004.

Pre-fascicle 4B of The Art of Computer Programming, A

draft of section 7.2.1.7. http://www-cs-faculty.stanford.

edu/~knuth/fasc4b.ps.gz.

[KP98] Arnold Knopfmacher and Helmut Prodinger. On Carlitz compo-

sitions. European Journal of Combinatorics, 19:579–589, 1998.

[KR05] Arnold Knopfmacher and Neville Robbins. Identities for the

total number of parts in partitions of integers. Utilitas mathe-

matica, 2005. Preprint: to appear.

[KS98] Donald L. Kreher and Douglas R. Stinson. Combinatorial Algo-

rithms: Generation, Enumeration and Search. CRC press LTC,

Boca Raton, Florida, 1998.

[KY76] Donald E. Knuth and Andrew C. Yao. The complexity of

nonuniform random number generation. In J. F. Traub, edi-

tor, Algorithms and Complexity, pages 357–428. Academic Press,

1976. Reprinted in Knuth’s Selected Papers on the Analysis of

Algorithms (2000), 545–603.

[Leh64] Derrick H. Lehmer. The machine tools of combinatorics. In Ed-

win F. Beckenbach, editor, Applied Combinatorial Mathematics,

chapter 1, pages 5–31. Wiley, New York, 1964.

[Li86] Liwu Li. Ranking and unranking of AVL trees. SIAM Journal

on Computing, 15(4):1025–1035, November 1986.

[Lie03] Jens Liebehenschel. Lexicographical generation of a generalized

Dyck language. SIAM Journal on Computing, 32(4):880–903,

2003.

205

BIBLIOGRAPHY

[LP00] Matthieu Latapy and Ha Duong Phan. The lattice of integer

partitions and its infinite extension. http://arxiv.org/abs/

math.CO/0008020, 2000.

[Mac93] Percy A. MacMahon. Memoir on the theory of the compositions

of numbers. Philosophical Transactions of the Royal Society of

London. Series A, 184:835–901, 1893.

[Mac08] Percy A. MacMahon. Second memoir on the compositions of

numbers. Philosophical Transactions of the Royal Society of

London. Series A, Containing Papers of a Mathematical or

Physical Character, 207:65–134, 1908.

[Mac15] Percy A. MacMahon. Combinatory Analysis. Cambridge Uni-

versity Press, 1915.

[Mar99] Stuart Martin. Schur Algebras and Representation Theory.

Cambridge University Press, 1999.

[McK65a] J. K. S. McKay. Algorithm 262: Number of restricted partitions

of N. Communications of the ACM, 8(8):493, August 1965.

[McK65b] J. K. S. McKay. Algorithm 263: Partition generator. Commu-

nications of the ACM, 8(8):493, August 1965.

[McK65c] J. K. S. McKay. Algorithm 264: Map of partitions into integers.

Communications of the ACM, 8(8):493, August 1965.

[McK70] J. K. S. McKay. Algorithm 371: Partitions in natural order.

Communications of the ACM, 13(1):52, January 1970.

[MM01] Conrado Mart́ınez and Xavier Molinero. A generic approach for

the unranking of labeled combinatorial classes. Random Struc-

tures and Algorithms, 19(3–4):472–497, November 2001.

[MM05] Conrado Mart́ınez and Xavier Molinero. Efficient iteration in

admissible combinatorial classes. Theoretical Computer Science,

346(2–3):388–417, November 2005.

206

BIBLIOGRAPHY

[MOSS96] Stephan Murer, Stephen Omohundro, David Stoutamire, and

Clemens Szyperski. Iteration abstraction in sather. ACM Trans-

actions on Programming Languages and Systems, 18(1):1–15,

January 1996.

[MR01] Wendy Myrvold and Frank Ruskey. Ranking and unranking

permutations in linear time. Information Processing Letters,

79(6):281–284, September 2001.

[Nak02] Shin-ichi Nakano. Efficient generation of plane trees. Informa-

tion Processing Letters, 84(3):167–172, November 2002.

[NMS71] T. V. Narayana, R. M. Mathsen, and J. Saranji. An algorithm

for generating partitions and its applications. Journal of Com-

binatorial Theory, Series A, 11(1):54–61, July 1971.

[NSST98] Jennifer M. Nolan, Vijay Sivaraman, Carla D. Savage, and

Pranav K. Tiwari. Graphical basis partitions. Graphs and Com-

binatorics, 14(3):241–261, August 1998.

[NSW98] Jennifer M. Nolan, Carla D. Savage, and Herbert S. Wilf. Basis

partitions. Discrete Mathematics, 179(1–3):277–283, January

1998.

[NW75] Albert Nijenhuis and Herbert S. Wilf. A method and two al-

gorithms on the theory of partitions. Journal of Combinatorial

Theory, Series A, 18(2):219–222, March 1975.

[NW78] Albert Nijenhuis and Herbert S. Wilf. Combinatorial Algorithms

for Computers and Calculators. Academic Press, New York,

second edition, 1978.

[Odl96] Andrew M. Odlyzko. Asymptotic enumeration methods. In

R. L. Graham, M. Grötschel, and L. Lovász, editors, Handbook

of combinatorics, volume II, pages 1063–1229. MIT Press, Cam-

bridge, MA, USA, 1996.

207

BIBLIOGRAPHY

[Öhr00] Yngve Öhrn. Elements of Molecular Symmetry. Wiley, 2000.

[O’S04] Edwin O’Shea. M -partitions: optimal partitions of weight for

one scale pan. Discrete Mathematics, 289(1–3):81–93, December

2004.

[Pak05] Igor Pak. Partition bijections, a survey. To appear in Ramanujan

Journal, 2005.

[Pit97] Jim Pitman. Partition structures derived from Brownian motion

and stable subordinators. Bernoulli, 3:79–96, 1997.

[Pla03] Michel Planat. Thermal 1/f noise from the theory of partitions:

application to a quartz resonator. Physica A: Statistical Me-

chanics and its Applications, 318(3–4):371–386, February 2003.

[PS03] Sriram Pemmaraju and Steven S. Skiena. Computational Dis-

crete Mathematics: Combinatorics and Graph Theory With

Mathematica. Cambridge University Press, 2003.

[PW79] E. S. Page and L. B. Wilson. An Introduction to Computational

Combinatorics. Cambridge University Press, Cambridge, 1979.

[RECS94] Frank Ruskey, Peter Eades, Bob Cohen, and Aaron Scott. Al-

ley CATs in search of good homes. Congressus Numerantium,

102:97–110, 1994.

[Rio58] John Riordan. An Introduction to Combinatorial Analysis. John

Wiley and Sons, New York, 1958.

[RJ76] W. Riha and K. R. James. Algorithm 29: Efficient algorithms for

doubly and multiply restricted partitions. Computing, 16:163–

168, 1976.

[RND77] Edward M. Reingold, Jurg Nievergelt, and Narsingh Deo. Com-

binatorial algorithms: theory and practice. Ridge Press/Random

House, 1977.

208

BIBLIOGRAPHY

[RS99] Frank Ruskey and Joe Sawada. An efficient algorithm for gener-

ating necklaces with fixed density. SIAM Journal on Computing,

29(2):671–684, October 1999.

[RSC04] Øystein J. Rødseth, James A. Sellers, and Kevin M. Courtright.

Arithmetic properties of non-squashing partitions into distinct

parts. Annals of Combinatorics, 8(3):347–353, August 2004.

[RSW92] Frank Ruskey, Carla Savage, and Terry Min Yih Wang. Generat-

ing necklaces. Journal of Algorithms, 13(3):414–430, September

1992.

[RSW95] David Rasmussen, Carla D. Savage, and Douglas B. West. Gray

code enumeration of families of integer partitions. Journal of

Combinatorial Theory, Series A, 70(2):201–229, May 1995.

[Rub76] Frank Rubin. Partition of integers. ACM Transactions on Math-

ematical Software, 2(4):364–374, December 1976.

[Rus78] Frank Ruskey. Generating t-ary trees lexicographically. SIAM

Journal on Computing, 7(4):424–436, November 1978.

[Rus01] Frank Ruskey. Combinatorial Generation. Working version 1i

http://www.cs.usyd.edu.au/~algo4301/Book.ps, 2001.

[Rus05] Frank Ruskey. Combinatorial object server. http://www.

theory.csc.uvic.ca/~cos/, 2005.

[Sag00] Marie-France Sagot. Combinatorial algorithms in computational

biology. ERCIM News, 43, October 2000. http://www.ercim.

org/publication/Ercim_News/enw43/sagot.html.

[Sav89] Carla D. Savage. Gray code sequences of partitions. Journal of

Algorithms, 10(4):577–595, 1989.

[Sav97] Carla D. Savage. A survey of combinatorial gray codes. SIAM

Review, 39(4):605–629, December 1997.

209

BIBLIOGRAPHY

[Saw01] Joe Sawada. Generating bracelets in constant amortized time.

SIAM Journal on Computing, 31(1):259–268, 2001.

[Sch86] Manfred R. Schroeder. Number Theory in Science and Com-

munication with Applications in Cryptography, Physics, Digital

Information, Computing, and Self-Similarity. Springer-Verlag,

Berlin, second enlarged edition, 1986.

[Sch04] Peter D. Schumer. Mathematical Journeys. Wiley, 2004.

[Sed77] Robert Sedgewick. Permutation generation methods. ACM

Computing Surveys, 9(2):137–164, June 1977.

[Ska88] Wladyslaw Skarbek. Generating ordered trees. Theoretical Com-

puter Science, 57(1):153–159, April 1988.

[Ski90] Steven S. Skiena. Implementing discrete mathematics: combi-

natorics and graph theory with mathematica. Addison-Wesley,

Redwood City, California, 1990.

[Ski98] Steven S. Skiena. The Algorithm Design Manual. TELOS–the

Electronic Library of Science, Santa Clara, California, 1998.

[Slo05] Neil J. A. Sloane. The on-line encyclopedia of integer sequences.

http://www.research.att.com/~njas/sequences/, 2005.

[SPH01] Neil Schemenauer, Tim Peters, and Magnus Lie Hetland.

Python extension proposal 255: Simple generators. http:

//www.python.org/peps/pep-0255.html, 2001.

[SS84] Frank W. Schmidt and Rodica Simion. On a partition iden-

tity. Journal of Combinatorial Theory, Series A, 36(2):249–252,

March 1984.

[SS96] Laura A. Sanchis and Matthew B. Squire. Parallel algorithms for

counting and randomly generating integer partitions. Journal of

Parallel and Distributed Computing, 34:29–35, 1996.

210

BIBLIOGRAPHY

[SS05] Neil J. A. Sloane and James A. Sellers. On non-squashing par-

titions. Discrete Mathematics, 294(3):259–274, May 2005.

[Sta86] Richard P. Stanley. Enumerative Combinatorics. Wadsworth,

Belmont, California, 1986.

[Sto62a] Frank Stockmal. Algorithm 114: Generation of partitions with

constraints. Communications of the ACM, 5(8):434, August

1962.

[Sto62b] Frank Stockmal. Algorithm 95: Generation of partitions in part-

count form. Communications of the ACM, 5(6):344, June 1962.

[Sto92] Ivan Stojmenović. On random and adaptive parallel generation

of combinatorial objects. International Journal of Computer

Math, 42:125–135, 1992.

[SW86] Dennis Stanton and Dennis White. Constructive combinatorics.

Springer-Verlag, Berlin, 1986.

[Syl82] James J. Sylvester. A constructive theory of partitions, arranged

in three acts, an interact and an exodion. American Journal of

Mathematics, 5(1/4):251–330, 1882.

[Tem49] H. N. V. Temperley. Statistical mechanics and the partition of

numbers. I. The transition of liquid helium. Proceedings of the

Royal Society of London. Series A, Mathematical and Physical

Sciences, 199(1058):361–375, November 1949.

[TMB04] Muoi N. Tran, M. V. N. Murthy, and Rajat K. Bhaduri. On the

quantum density of states and partitioning an integer. Annals

of Physics, 311(1):204–219, May 2004.

[Tom82] C. Tomasi. Two simple algorithms for the generation of parti-

tions of an integer. Alta Frequenza, 51(6):352–356, 1982.

211

BIBLIOGRAPHY

[Tro78] Anthony E. Trojanowski. Ranking and listing algorithms for k-

ary trees. SIAM Journal on Computing, 7(4):492–509, Novem-

ber 1978.

[Tuc84] Alan Tucker. Applied Combinatorics. Wiley, second edition,

1984.

[Tun99] Wu-Ki Tung. Group Theory in Physics. World Scientific, 1999.

[Wal00] Timothy R. Walsh. Loop-free sequencing of bounded integer

compositions. Journal of Combinatorial Mathematics and Com-

binatorial Computing, 33:323–345, 2000.

[Wei01] Karsten Weihe. A software engineering perspective on algorith-

mics. ACM Computing Surveys, 33(1):89–134, March 2001.

[Wel71] Mark B. Wells. Elements of Combinatorial Computing. Perga-

mon Press, Oxford, 1971.

[Whi70a] J. S. White. Algorithm 373: Number of doubly restricted parti-

tions. Communications of the ACM, 13(2):120, February 1970.

[Whi70b] J. S. White. Algorithm 374: Restricted partition generator.

Communications of the ACM, 13(2):120, February 1970.

[Wil85] S. Gill Williamson. Combinatorics for Computer Science. Com-

puter Science Press, 1985.

[Wil89] Herbert S. Wilf. Combinatorial Algorithms: an update. Society

for Industrial & Applied Mathematics, Philadelphia, 1989.

[Wil90] Herbert S. Wilf. Generatingfunctionology. Academic Press, San

Diego, 1990.

[Wil02] Herbert S. Wilf. Lectures on integer partitions. Pacific Institute

for the Mathematical Sciences, 2002.

212

BIBLIOGRAPHY

[WROM86] Robert Alan Wright, Bruce Richmond, Andrew Odlyzko, and

Brendan D. McKay. Constant time generation of free trees.

SIAM Journal on Computing, 15(2):540–548, May 1986.

[Yan00] Winston C. Yang. Derivatives are essentially integer partitions.

Discrete Mathematics, 222(1–3):235–245, July 2000.

[Yee01] Ae Ja Yee. On the combinatorics of lecture hall partitions. The

Ramanujan Journal, 5(3):247–262, September 2001.

[Yee04] Ae Ja Yee. Partitions with difference conditions and Alder’s

conjecture. Proceedings of the National Academy of Sciences of

the United States of America, 101(47):16417–16418, November

2004.

[ZS98] Antoine Zoghbi and Ivan Stojmenović. Fast algorithms for gen-

erating integer partitions. International Journal of Computer

Math, 70:319–332, 1998.

213

